Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 243(3): 894-908, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853424

RESUMO

The 'assimilates inhibition hypothesis' posits that accumulation of nonstructural carbohydrates (NSCs) in leaves reduces leaf net photosynthetic rate, thus internally regulating photosynthesis. Experimental work provides equivocal support mostly under controlled conditions without identifying a particular NSC as involved in the regulation. We combined 3-yr in situ leaf gas exchange observations (natural dynamics) in the upper crown of mature Betula pendula simultaneously with measurements of concentrations of sucrose, hexoses (glucose and fructose), and starch, and similar measurements during several one-day shoot girdling (perturbation dynamics). Leaf water potential and water and nitrogen content were measured to account for their possible contribution to photosynthesis regulation. Leaf photosynthetic capacity (A/Ci) was temporally negatively correlated with NSC accumulation under both natural and perturbation states. For developed leaves, leaf hexose concentration explained A/Ci variation better than environmental variables (temperature history and daylength); the opposite was observed for developing leaves. The weaker correlations between NSCs and A/Ci in developing leaves may reflect their strong internal sink strength for carbohydrates. By contrast, the strong decline in photosynthetic capacity with NSCs accumulation in mature leaves, observed most clearly with hexose, and even more tightly with its constituents, provides support for the role of assimilates in regulating photosynthesis under natural conditions.


Assuntos
Betula , Hexoses , Fotossíntese , Folhas de Planta , Estações do Ano , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Betula/fisiologia , Betula/metabolismo , Hexoses/metabolismo , Sequestro de Carbono , Água/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Amido/metabolismo
2.
New Phytol ; 242(6): 2440-2452, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549455

RESUMO

Shoot-level emissions of aerobically produced methane (CH4) may be an overlooked source of tree-derived CH4, but insufficient understanding of the interactions between their environmental and physiological drivers still prevents the reliable upscaling of canopy CH4 fluxes. We utilised a novel automated chamber system to continuously measure CH4 fluxes from the shoots of Pinus sylvestris (Scots pine) saplings under drought to investigate how canopy CH4 fluxes respond to the drought-induced alterations in their physiological processes and to isolate the shoot-level production of CH4 from soil-derived transport and photosynthesis. We found that aerobic CH4 emissions are not affected by the drought-induced stress, changes in physiological processes, or decrease in photosynthesis. Instead, these emissions vary on short temporal scales with environmental drivers such as temperature, suggesting that they result from abiotic degradation of plant compounds. Our study shows that aerobic CH4 emissions from foliage are distinct from photosynthesis-related processes. Thus, instead of photosynthesis rates, it is more reliable to construct regional and global estimates for the aerobic CH4 emission based on regional differences in foliage biomass and climate, also accounting for short-term variations of weather variables such as air temperature and solar radiation.


Assuntos
Secas , Metano , Fotossíntese , Pinus sylvestris , Brotos de Planta , Pinus sylvestris/fisiologia , Pinus sylvestris/metabolismo , Metano/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Aerobiose , Temperatura , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Biomassa
3.
J Exp Bot ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779859

RESUMO

Stem CO2 efflux is an important component of the carbon balance in forests. The efflux is considered to principally reflect the net result of two dominating and opposing processes: stem respiration and stem photosynthesis. In addition, transport of CO2 in xylem sap is thought to play an appreciable role in affecting the net flux. This work presents an approach to partition stem CO2 efflux among these processes using sap-flux data and CO2-exchange measurements from dark and transparent chambers placed on mature Scots pine (Pinus sylvestris) trees. Seasonal changes and monthly parameters describing the studied processes were determined. Respiration contributed most to stem net CO2 flux, reaching up to 79% (considering the sum of the absolute values of stem respiration, stem photosynthesis and flux from CO2 transported in xylem sap to be 100%) in June, when stem growth was greatest. Photosynthesis contribution accounted for up to 13 % of the stem net CO2 flux, increasing over the monitoring period. CO2 transported axially with sap flow, decreased towards the end of the growing season. At a reference temperature, respiration decreased starting around midsummer, while its temperature sensitivity increased during the summer. A decline was observed for photosynthetic quantum yield around midsummer together with decreasing light-saturation point. The proposed approach facilitates modeling net stem CO2 flux at a range of time scales.

4.
Tree Physiol ; 44(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470306

RESUMO

Drought is a major environmental stressor that limits seedling growth. Several studies have found that some ectomycorrhizal fungi may increase the drought tolerance of nursery-raised seedlings. However, the precise role that different ectomycorrhizal fungi species play in drought tolerance remains unclear. We evaluated the transpiration rate of Pinus sylvestris seedlings under drought stress in greenhouse conditions by exposing seedlings to 10 ectomycorrhizal fungi species, with different functional traits (exploration type and hydrophobicity), and to 3 natural soil inoculums. We measured the transpiration and water potential of the seedlings during a 10-day drought period and a 14-day recovery period. We then analyzed their root morphology, stem, needle, root biomass and needle chlorophyll fluorescence. We showed that exposing seedlings to ectomycorrhizal fungi or soil inoculum had a positive effect on their transpiration rate during the driest period and through the recovery phase, leading to 2- to 3-fold higher transpiration rates compared with the nonexposed control seedlings. Seedlings exposed to medium-distance ectomycorrhizal fungi performed better than other exploration types under drought conditions, but ectomycorrhizal fungi hydrophobicity did not seem to affect the seedlings response to drought. No significant differences were observed in biomass accumulation and root morphology between the seedlings exposed to different ectomycorrhizal fungi species and the control. Our results highlight the positive and species-specific effect of ectomycorrhizal fungi exposure on drought tolerance in nursery-raised Scots pine seedlings. The studied ectomycorrhizal fungi functional traits may not be sufficient to predict the seedling response to drought stress, thus physiological studies across multiple species are needed to draw the correct conclusion. Our findings have potential practical implications for enhancing seedling drought tolerance in nursery plant production.


Assuntos
Micorrizas , Pinus sylvestris , Pinus , Pinus sylvestris/fisiologia , Plântula/fisiologia , Biomassa , Raízes de Plantas/fisiologia , Secas , Transpiração Vegetal/fisiologia , Solo , Pinus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA