Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(32): 19446-19454, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723829

RESUMO

Antimicrobial peptides are important candidates for developing new classes of antibiotics because of their potency against antibiotic-resistant pathogens. Current research focuses on topical applications and it is unclear how to design peptides with systemic efficacy. To address this problem, we designed two potent peptides by combining database-guided discovery with structure-based design. When bound to membranes, these two short peptides with an identical amino acid composition can adopt two distinct amphipathic structures: A classic horizontal helix (horine) and a novel vertical spiral structure (verine). Their horizontal and vertical orientations on membranes were determined by solid-state 15N NMR data. While horine was potent primarily against gram-positive pathogens, verine showed broad-spectrum antimicrobial activity. Both peptides protected greater than 80% mice from infection-caused deaths. Moreover, horine and verine also displayed significant systemic efficacy in different murine models comparable to conventional antibiotics. In addition, they could eliminate resistant pathogens and preformed biofilms. Significantly, the peptides showed no nephrotoxicity to mice after intraperitoneal or intravenous administration for 1 wk. Our study underscores the significance of horine and verine in fighting drug-resistant pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Membrana Celular/metabolismo , Bases de Dados de Proteínas , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Resultado do Tratamento
2.
Amino Acids ; 53(8): 1241-1256, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34251525

RESUMO

The antimicrobial peptides Ocellatin-LB1, -LB2 and -F1, isolated from frogs, are identical from residue 1 to 22, which correspond to the -LB1 sequence, whereas -LB2 carries an extra N and -F1 additional NKL residues at their C-termini. Despite the similar sequences, previous investigations showed different spectra of activities and biophysical investigations indicated a direct correlation between both membrane-disruptive properties and activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. This study presents experimental evidence as well as results from theoretical studies that contribute to a deeper understanding on how these peptides exert their antimicrobial activities and how small differences in the amino acid composition and their secondary structure can be correlated to these activity gaps. Solid-state NMR experiments allied to the simulation of anisotropic NMR parameters allowed the determination of the membrane topologies of these ocellatins. Interestingly, the extra Asn residue at the Ocellatin-LB2 C-terminus results in increased topological flexibility, which is mainly related to wobbling of the helix main axis as noticed by molecular dynamics simulations. Binding kinetics and thermodynamics of the interactions have also been assessed by Surface Plasmon Resonance and Isothermal Titration Calorimetry. Therefore, these investigations allowed to understand in atomic detail the relationships between peptide structure and membrane topology, which are in tune within the series -F1 > > -LB1 ≥ -LB2, as well as how peptide dynamics can affect membrane topology, insertion and binding.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Animais , Anuros , Calorimetria/métodos , Cinética , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície , Termodinâmica
3.
Biochemistry ; 58(24): 2782-2795, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31120242

RESUMO

The p24 proteins play an important role in the secretory pathway where they selectively connect various cargo to other proteins, thereby being involved in the controlled assembly and disassembly of the coat protein complexes and lipid sorting. Recently, a highly selective lipid interaction motif has been identified within the p24 transmembrane domain (TMD) that recognizes the combination of the sphingomyelin headgroup and the exact length of the C18 fatty acyl chain (SM-C18). Here, we present investigations of the structure, dynamics, and sphingomyelin interactions of the p24 transmembrane region using circular dichroism, tryptophan fluorescence, and solid-state nuclear magnetic resonance (NMR) spectroscopies of the polypeptides and the surrounding lipids. Membrane insertion and/or conformation of the TMD is strongly dependent on the membrane lipid composition where the transmembrane helical insertion is strongest in the presence of 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) and SM-C18. By analyzing solid-state NMR angular restraints from a large number of labeled sites, we have found a tilt angle of 19° for the transmembrane helical domain at a peptide-to-lipid ratio of 1 mol %. Only minor changes in the solid-state NMR spectra are observed due to the presence of SM-C18; the only visible alterations are associated with the SM-C18 recognition motif close to the carboxy-terminal part of the hydrophobic transmembrane region in the proximity of the SM headgroup. Finally, the deuterium order parameters of POPC- d31 were nearly unaffected by the presence of SM-C18 or the polypeptide alone but decreased noticeably when the sphingomyelin and the polypeptide were added in combination.


Assuntos
Proteínas de Membrana/química , Fragmentos de Peptídeos/química , Esfingomielinas/química , Sequência de Aminoácidos , Humanos , Bicamadas Lipídicas/química , Lipossomos/química , Proteínas de Membrana/metabolismo , Micelas , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Esfingomielinas/metabolismo
4.
Chembiochem ; 20(16): 2141-2150, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31125169

RESUMO

Trichogin GA IV is a short peptaibol with antimicrobial activity. This uncharged, but amphipathic, sequence is aligned at the membrane interface and undergoes a transition to an aggregated state that inserts more deeply into the membrane, an assembly that predominates at a peptide-to-lipid ratio (P/L) of 1:20. In this work, the natural trichogin sequence was prepared and reconstituted into oriented lipid bilayers. The 15 N NMR chemical shift is indicative of a well-defined alignment of the peptide parallel to the membrane surface at P/Ls of 1:120 and 1:20. When the P/L is increased to 1:8, an additional peptide topology is observed that is indicative of a heterogeneous orientation, with helix alignments ranging from around the magic angle to perfectly in-plane. The topological preference of the trichogin helix for an orientation parallel to the membrane surface was confirmed by attenuated total reflection FTIR spectroscopy. Furthermore, 19 F CODEX experiments were performed on a trichogin sequence with 19 F-Phe at position 10. The CODEX decay is in agreement with a tetrameric complex, in which the 19 F sites are about 9-9.5 Šapart. Thus, a model emerges in which the monomeric peptide aligns along the membrane surface. When the peptide concentration increases, first dimeric and then tetrameric assemblies form, made up from helices oriented predominantly parallel to the membrane surface. The formation of these aggregates correlates with the release of vesicle contents including relatively large molecules.


Assuntos
Bicamadas Lipídicas/química , Lipopeptídeos/química , Fosfolipídeos/química , Sequência de Aminoácidos , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
5.
J Membr Biol ; 252(4-5): 371-384, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31187155

RESUMO

The major histocompatibility complex class II (MHC II) membrane proteins are key players in the adaptive immune response. An aberrant function of these molecules is associated with a large number of autoimmune diseases such as diabetes type I and chronic inflammatory diseases. The MHC class II is assembled from DQ alpha 1 and DQ beta 1 which come together as a heterodimer through GXXXG-mediated protein-protein interactions and a highly specific protein-sphingomyelin-C18 interaction motif located on DQA1. This association can have important consequences in regulating the function of these membrane proteins. Here, we investigated the structure and topology of the DQA1 and DQB1 transmembrane helical domains by CD-, oriented 2H and 15N solid-state NMR spectroscopies. The spectra at peptide-to-lipid ratios of 0.5 to 2 mol% are indicative of a topological equilibrium involving a helix crossing the membrane with a tilt angle of about 20° and another transmembrane topology with around 30° tilt. The latter is probably representing a dimer. Furthermore, at the lowest peptide-to-lipid ratio, a third polypeptide population becomes obvious. Interestingly, the DQB1 and to a lesser extent the DQA1 transmembrane helical domains exhibit a strong fatty acyl chain disordering effect on the inner segments of the 2H-labelled palmitoyl chain of POPC bilayers. This phosphatidylcholine disordering requires the presence of sphingomyelin-C18 suggesting that the ensemble of transmembrane polypeptide and sphingolipid exerts positive curvature strain.


Assuntos
Cadeias alfa de HLA-DQ/química , Cadeias beta de HLA-DQ/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Motivos de Aminoácidos , Cadeias alfa de HLA-DQ/metabolismo , Cadeias beta de HLA-DQ/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos
6.
Biophys J ; 115(3): 467-477, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30054032

RESUMO

Apolipoprotein A-I is the major protein component of high-density lipoproteins and fulfils important functions in lipid metabolism. Its structure consists of a chain of tandem domains of amphipathic helices. Using this protein as a template membrane scaffolding protein, class A amphipathic helical peptides were designed to support the amphipathic helix theory and later as therapeutic tools in biomedicine. Here, we investigated the lipid interactions of two apolipoprotein-A-I-derived class A amphipathic peptides, 14A (Ac-DYLKA FYDKL KEAF-NH2) and 18A (Ac-DWLKA FYDKV AEKLK EAF- NH2), including the disc-like supramolecular structures they form with phospholipids. Thus, the topologies of 14A and 18A in phospholipid bilayers have been determined by oriented solid-state NMR spectroscopy. Whereas at a peptide-to-lipid ratio of 2 mol% the peptides align parallel to the bilayer surface, at 7.5 mol% disc-like structures are formed that spontaneously orient in the magnetic field of the NMR spectrometer. From a comprehensive data set of four 15N- or 2H-labeled positions of 14A, a tilt angle, which deviates from perfectly in-planar by 14°, and a model for the peptidic rim structure have been obtained. The tilt and helical pitch angles are well suited to cover the hydrophobic chain region of the bilayer when two peptide helices form a head-to-tail dimer. Thus, the detailed topology found in this work agrees with the peptides forming the rim of nanodiscs in a double belt arrangement.


Assuntos
Apolipoproteína A-I/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica
7.
Chemphyschem ; 18(15): 2103-2113, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28574169

RESUMO

Dynamic nuclear polarization (DNP) boosts the sensitivity of NMR spectroscopy by orders of magnitude and makes investigations previously out of scope possible. For magic-angle-spinning (MAS) solid-state NMR spectroscopy studies, the samples are typically mixed with biradicals dissolved in a glass-forming solvent and are investigated at cryotemperatures. Herein, we present new biradical polarizing agents developed for matrix-free samples such as supported lipid bilayers, which are systems widely used for the investigation of membrane polypeptides of high biomedical importance. A series of 11 biradicals with different structures, geometries, and physicochemical properties were comprehensively tested for DNP performance in lipid bilayers, some of them developed specifically for DNP investigations of membranes. The membrane-anchored biradicals PyPol-C16, AMUPOL-cholesterol, and bTurea-C16 were found to exhibit improved g-tensor alignment, inter-radical distance, and dispersion. Consequently, these biradicals show the highest signal enhancement factors so far obtained for matrix-free membranes or other matrix-free samples and may potentially shorten NMR acquisition times by three orders of magnitude. Furthermore, the optimal biradical-to-lipid ratio, sample deuteration, and membrane lipid composition were determined under static and MAS conditions. To rationalize biradical performance better, DNP enhancement was measured by using the 13 C and 15 N signals of lipids and a peptide as a function of the biradical concentration, DNP build-up time, resonance line width, quenching effect, microwave power, and MAS frequency.

8.
Biophys J ; 111(11): 2450-2459, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27926846

RESUMO

Alamethicins (ALMs) are antimicrobial peptides of fungal origin. Their sequences are rich in hydrophobic amino acids and strongly interact with lipid membranes, where they cause a well-defined increase in conductivity. Therefore, the peptides are thought to form transmembrane helical bundles in which the more hydrophilic residues line a water-filled pore. Whereas the peptide has been well characterized in terms of secondary structure, membrane topology, and interactions, much fewer data are available regarding the quaternary arrangement of the helices within lipid bilayers. A new, to our knowledge, fluorine-labeled ALM derivative was prepared and characterized when reconstituted into phospholipid bilayers. As a part of these studies, C19F3-labeled compounds were characterized and calibrated for the first time, to our knowledge, for 19F solid-state NMR distance and oligomerization measurements by centerband-only detection of exchange (CODEX) experiments, which opens up a large range of potential labeling schemes. The 19F-19F CODEX solid-state NMR experiments performed with ALM in POPC lipid bilayers and at peptide/lipid ratios of 1:13 are in excellent agreement with molecular-dynamics calculations of dynamic pentameric assemblies. When the peptide/lipid ratio was lowered to 1:30, ALM was found in the dimeric form, indicating that the supramolecular organization is tuned by equilibria that can be shifted by changes in environmental conditions.


Assuntos
Alameticina/química , Antibacterianos/química , Membrana Celular/química , Sequência de Aminoácidos , Membrana Celular/metabolismo , Fenômenos Eletrofisiológicos , Espectroscopia de Ressonância Magnética , Fosfatidilcolinas/metabolismo , Multimerização Proteica
9.
Proc Natl Acad Sci U S A ; 110(12): 4586-91, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23426625

RESUMO

Multicellular organisms fight bacterial and fungal infections by producing peptide-derived broad-spectrum antibiotics. These host-defense peptides compromise the integrity of microbial cell membranes and thus evade pathways by which bacteria develop rapid antibiotic resistance. Although more than 1,700 host-defense peptides have been identified, the structural and mechanistic basis of their action remains speculative. This impedes the desired rational development of these agents into next-generation antibiotics. We present the X-ray crystal structure as well as solid-state NMR spectroscopy, electrophysiology, and MD simulations of human dermcidin in membranes that reveal the antibiotic mechanism of this major human antimicrobial, found to suppress Staphylococcus aureus growth on the epidermal surface. Dermcidin forms an architecture of high-conductance transmembrane channels, composed of zinc-connected trimers of antiparallel helix pairs. Molecular dynamics simulations elucidate the unusual membrane permeation pathway for ions and show adjustment of the pore to various membranes. Our study unravels the comprehensive mechanism for the membrane-disruptive action of this mammalian host-defense peptide at atomistic level. The results may form a foundation for the structure-based design of peptide antibiotics.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Canais Iônicos/química , Canais Iônicos/farmacologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Peptídeos/química , Peptídeos/farmacologia , Cristalografia por Raios X , Humanos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
10.
Biophys J ; 108(5): 1187-98, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25762330

RESUMO

Mislocalization and aggregation of the huntingtin protein are related to Huntington's disease. Its first exon-more specifically the first 17 amino acids (Htt17)-is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin's activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties-order parameter, thickness, and area per lipid-of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Sequência de Aminoácidos , Humanos , Proteína Huntingtina , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/química , Fosfatidilcolinas/química , Ligação Proteica , Estrutura Terciária de Proteína
11.
Eur Biophys J ; 43(10-11): 499-507, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182242

RESUMO

The cationic amphipathic designer peptide LAH4 exhibits potent antimicrobial, nucleic acid transfection and cell penetration activities. Closely related derivatives have been developed to enhance viral transduction for gene therapeutic assays. LAH4 contains four histidines and, consequently, its overall charge and membrane topology in lipid bilayers are strongly pH dependent. In order to better understand the differential interactions of this amphipathic peptide with negatively-charged membranes its interactions, topologies, and penetration depth were investigated in the presence of lipid bilayers as a function of pH, buffer, phospholipid head group, and fatty acyl chain composition using a combination of oriented synchrotron radiation circular dichroism spectroscopy as well as oriented and non-oriented solid-state NMR spectroscopy. This combination of methods indicates that in the presence of lipids with phosphatidylglycerol head groups, the topological equilibria of LAH4 is shifted towards more in-plane configurations even at neutral pH. In contrast, a transmembrane alignment is promoted when LAH4 interacts with membranes made of dimyristoyl phospholipids rather than palmitoyl-oleoyl-phospholipids. Finally, the addition of citrate buffer favours LAH4 transmembrane alignments, even at low pH, probably by complex formation with the cationic charges of the peptide. In summary, this study has revealed that the membrane topology of this peptide is readily modulated by the environmental conditions.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Bicamadas Lipídicas/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Eletricidade Estática
12.
Chem Biodivers ; 11(8): 1163-91, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25146762

RESUMO

We prepared, by solution-phase methods, and fully characterized three analogs of the membrane-active peptaibiotic alamethicin F50/5, bearing a single trifluoroacetyl (Tfa) label at the N-terminus, at position 9 (central region) or at position 19 (C-terminus), and with the three Gln at positions 7, 18, and 19 replaced by Glu(OMe) residues. To add the Tfa label at position 9 or 19, a γ-trifluoroacetylated α,γ-diaminobutyric acid (Dab) residue was incorporated as a replacement for the original Val(9) or Glu(OMe)(19) amino acid. We performed a detailed conformational analysis of the three analogs (using FT-IR absorption, CD, 2D-NMR, and X-ray diffraction), which clearly showed that Tfa labeling does not introduce any dramatic backbone modification in the predominantly α-helical structure of the parent peptaibiotic. The results of an initial solid-state (19)F-NMR study on one of the analogs favor the conclusion that the Tfa group is a very promising reporter for the analysis of peptaibioticmembrane interactions. Finally, we found that the antimicrobial activities of the three newly synthesized analogs depend on the position of the Tfa label in the peptide sequence.


Assuntos
Alameticina/análogos & derivados , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Alameticina/química , Sequência de Aminoácidos , Anti-Infecciosos/síntese química , Técnicas de Química Sintética , Dicroísmo Circular , Avaliação Pré-Clínica de Medicamentos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Difração de Raios X
13.
Biophys J ; 105(3): 699-710, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23931318

RESUMO

The very amino-terminal domain of the huntingtin protein is directly located upstream of the protein's polyglutamine tract, plays a decisive role in several important properties of this large protein and in the development of Huntington's disease. This huntingtin 1-17 domain is on the one hand known to markedly increase polyglutamine aggregation rates and on the other hand has been shown to be involved in cellular membrane interactions. Here, we determined the high-resolution structure of huntingtin 1-17 in dodecyl phosphocholine micelles and the topology of its helical domain in oriented phosphatidylcholine bilayers. Using two-dimensional solution NMR spectroscopy the low-energy conformations of the polypeptide were identified in the presence of dodecyl phosphocholine detergent micelles. In a next step a set of four solid-state NMR angular restraints was obtained from huntingtin 1-17 labeled with (15)N and (2)H at selected sites. Of the micellar ensemble of helical conformations only a limited set agrees in quantitative detail with the solid-state angular restraints of huntingtin 1-17 obtained in supported planar lipid bilayers. Thereby, the solid-state NMR data were used to further refine the domain structure in phospholipid bilayers. At the same time its membrane topology was determined and different motional regimes of this membrane-associated domain were explored. The pronounced structural transitions of huntingtin 1-17 upon membrane-association result in a α-helical conformation from K6 to F17, i.e., up to the very start of the polyglutamine tract. This amphipathic helix is aligned nearly parallel to the membrane surface (tilt angle ∼77°) and is characterized by a hydrophobic ridge on one side and an alternation of cationic and anionic residues that run along the hydrophilic face of the helix. This arrangement facilitates electrostatic interactions between huntingtin 1-17 domains and possibly with the proximal polyglutamine tract.


Assuntos
Bicamadas Lipídicas/química , Proteínas do Tecido Nervoso/química , Sequência de Aminoácidos , Animais , Humanos , Espectroscopia de Ressonância Magnética , Micelas , Dados de Sequência Molecular , Estrutura Terciária de Proteína
14.
Biochemistry ; 52(5): 847-58, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23305455

RESUMO

The amino-terminal domain of huntingtin (Htt17), located immediately upstream of the decisive polyglutamine tract, strongly influences important properties of this large protein and thereby the development of Huntington's disease. Htt17 markedly increases polyglutamine aggregation rates and the level of huntingtin's interactions with biological membranes. Htt17 adopts a largely helical conformation in the presence of membranes, and this structural transition was used to quantitatively analyze membrane association as a function of lipid composition. The apparent membrane partitioning constants increased in the presence of anionic lipids but decreased with increasing amounts of cholesterol. When membrane permeabilization was tested, a pronounced dye release was observed from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles and 75:25 (molar ratio) POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine vesicles but not across bilayers that better mimic cellular membranes. Solid-state nuclear magnetic resonance structural investigations indicated that the Htt17 α-helix adopts an alignment parallel to the membrane surface, and that the tilt angle (∼75°) was nearly constant in all of the membranes that were investigated. Furthermore, the addition of Htt17 resulted in a decrease in the lipid order parameter in all of the membranes that were investigated. The lipid interactions of Htt17 have pivotal implications for membrane anchoring and functional properties of huntingtin and concomitantly the development of the disease.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Humanos , Proteína Huntingtina , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Permeabilidade , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
15.
Biophys J ; 100(6): 1473-80, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21402029

RESUMO

To gain further insight into the antimicrobial activities of cationic linear peptides, we investigated the topology of each of two peptides, PGLa and magainin 2, in oriented phospholipid bilayers in the presence and absence of the other peptide and as a function of the membrane lipid composition. Whereas proton-decoupled (15)N solid-state NMR spectroscopy indicates that magainin 2 exhibits stable in-plane alignments under all conditions investigated, PGLa adopts a number of different membrane topologies with considerable variations in tilt angle. Hydrophobic thickness is an important parameter that modulates the alignment of PGLa. In equimolar mixtures of PGLa and magainin 2, the former adopts transmembrane orientations in dimyristoyl-, but not 1-palmitoyl-2-oleoyl-, phospholipid bilayers, whereas magainin 2 remains associated with the surface in all cases. These results have important consequences for the mechanistic models explaining synergistic activities of the peptide mixtures and will be discussed. The ensemble of data suggests that the thinning of the dimyristoyl membranes caused by magainin 2 tips the topological equilibrium of PGLa toward a membrane-inserted configuration. Therefore, lipid-mediated interactions play a fundamental role in determining the topology of membrane peptides and proteins and thereby, possibly, in regulating their activities as well.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bicamadas Lipídicas/metabolismo , Magaininas/química , Magaininas/metabolismo , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sinergismo Farmacológico , Bicamadas Lipídicas/química , Magaininas/farmacologia , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ligação Proteica
16.
Biochemistry ; 50(18): 3784-95, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21456583

RESUMO

The antimicrobial arenicin peptides are cationic amphipathic sequences that strongly interact with membranes. Through a cystine ring closure a cyclic ß-sheet structure is formed in aqueous solution, which persists when interacting with model membranes. In order to investigate the conformation, interactions, dynamics, and topology of their bilayer-associated states, arenicin 1 and 2 were prepared by chemical solid-phase peptide synthesis or by bacterial overexpression, labeled selectively or uniformly with (15)N, reconstituted into oriented membranes, and investigated by proton-decoupled (31)P and (15)N solid-state NMR spectroscopy. Whereas the (31)P NMR spectra indicate that the peptide induces orientational disorder at the level of the phospholipid head groups, the (15)N chemical shift spectra agree well with a regular ß-sheet conformation such as the one observed in micellar environments. In contrast, the data do not fit the twisted ß-sheet structure found in aqueous buffer. Furthermore, the chemical shift distribution is indicative of considerable conformational and/or topological heterogeneity when at the same time the (15)N NMR spectra exclude alignments of the peptide where the ß-sheet lies side ways on the membrane surface. The ensemble of experimental constraints, the amphipathic character of the peptide, and in particular the distribution of the six arginine residues are in agreement with a boatlike dimer structure, similar or related to the one observed in micellar solution, that floats on the membrane surface with the possibility to oligomerize into higher order structures and/or to insert in a transmembrane fashion.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Arginina/química , Simulação por Computador , Escherichia coli/metabolismo , Proteínas de Helminto , Bicamadas Lipídicas/química , Lipídeos/química , Micelas , Peptídeos/farmacologia , Fosfolipídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Prótons , Proteínas Recombinantes/química
17.
Biophys J ; 96(1): 86-100, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18835909

RESUMO

Ampullosporin A and alamethicin are two members of the peptaibol family of antimicrobial peptides. These compounds are produced by fungi and are characterized by a high content of hydrophobic amino acids, and in particular the alpha-tetrasubstituted amino acid residue ?-aminoisobutyric acid. Here ampullosporin A and alamethicin were uniformly labeled with (15)N, purified and reconstituted into oriented phophatidylcholine lipid bilayers and investigated by proton-decoupled (15)N and (31)P solid-state NMR spectroscopy. Whereas alamethicin (20 amino acid residues) adopts transmembrane alignments in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes the much shorter ampullosporin A (15 residues) exhibits comparable configurations only in thin membranes. In contrast the latter compound is oriented parallel to the membrane surface in 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine and POPC bilayers indicating that hydrophobic mismatch has a decisive effect on the membrane topology of these peptides. Two-dimensional (15)N chemical shift -(1)H-(15)N dipolar coupling solid-state NMR correlation spectroscopy suggests that in their transmembrane configuration both peptides adopt mixed alpha-/3(10)-helical structures which can be explained by the restraints imposed by the membranes and the bulky alpha-aminoisobutyric acid residues. The (15)N solid-state NMR spectra also provide detailed information on the helical tilt angles. The results are discussed with regard to the antimicrobial activities of the peptides.


Assuntos
Alameticina/química , Bicamadas Lipídicas/química , Peptídeos/química , Simulação por Computador , Hypocreales , Modelos Químicos , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Peptaibols/química , Isótopos de Fósforo , Fosforilcolina/química , Estrutura Secundária de Proteína , Prótons , Espectrometria de Massas em Tandem , Difração de Raios X
18.
J Phys Chem B ; 113(10): 3034-42, 2009 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19708263

RESUMO

Alamethicin, a hydrophobic peptide that is considered a paradigm for membrane channel formation, was uniformly labeled with 15N, reconstituted into oriented phosphatidylcholine bilayers at concentrations of 1 or 5 mol %, and investigated by solid-state NMR spectroscopy as a function of temperature. Whereas the peptide adopts a transmembrane alignment in POPC bilayers at all temperatures investigated, it switches from a transmembrane to an in-plane orientation in DPPC membranes when passing the phase transition temperature. This behavior can be explained by an increase in membrane hydrophobic thickness and the resulting hydrophobic mismatch condition. Having established the membrane topology of alamethicin at temperatures above and below the phase transition, ESEEM EPR was used to investigate the water accessibility of alamethicin synthetic analogues carrying the electron spin label TOAC residue at one of positions 1, 8, or 16. Whereas in the transmembrane alignment the labels at positions 8 and 16 are screened from the water phase, this is only the case for the latter position when adopting an orientation parallel to the surface. By comparing the EPR and solid-state NMR data of membrane-associated alamethicin it becomes obvious that the TOAC spin labels and the cryo-temperatures required for EPR spectroscopy have less of an effect on the alamethicin-POPC interactions when compared to DPPC. Finally, at P/L ratios of 1/100, spectral line broadening due to spin-spin interactions and thereby peptide oligomerization within the membrane were detected for transmembrane alamethicin.


Assuntos
Alameticina/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Espectroscopia de Ressonância Magnética/métodos , Fosfolipídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Elétrons , Lipídeos/química , Modelos Químicos , Conformação Molecular , Peptídeos/química , Fosfatidilcolinas/química , Marcadores de Spin , Propriedades de Superfície , Trichoderma/metabolismo
19.
Chem Phys Lipids ; 219: 58-71, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30711343

RESUMO

The membrane topology of the peptide 18A, a derivative of apolipoprotein A-I, is investigated in structural detail. Apolipoprotein A-I is the dominant protein component of high density lipoproteins with important functions in cholesterol metabolism. 18A (Ac-DWLKA FYDKV AEKLK EAF- NH2) was designed to mimic the structure of tandem domains of class A amphipathic helices and has served as a lead peptide for biomedical applications. At low peptide-to-lipid ratios 18A partitions into phosphatidylcholine membranes with helix topologies parallel to the membrane surface, an alignment that is maintained when disc-like bicelles form at higher peptide-to-lipid ratios. Notably, the bicelles interact cooperatively with the magnetic field of the NMR spectrometer, thus the bilayer normal is oriented perpendicular to the magnetic field direction. A set of peptides that totals four 15N or 2H labelled positions of 18A allowed the accurate analysis of tilt and azimuthal angles relative to the membrane surface under different conditions. The topology agrees with a double belt arrangement forming a rim that covers the hydrophobic fatty acyl chains of the bicelles. In another set of experiments, it was shown that POPC nanodiscs prepared in the presence of diisobutylene/maleic acid (DIBMA) polymers can also be made to align in the magnetic field. Finally, the transmembrane domains of the DQ alpha-1 and DQ beta-1 subunits of the major histocomptability complex (MHC) class II have been prepared and reconstituted into magnetically oriented bicelles for NMR structural analysis.


Assuntos
Bicamadas Lipídicas/química , Nanoestruturas/química , Peptídeos/química , Sequência de Aminoácidos , Dimiristoilfosfatidilcolina/química , Espectroscopia de Ressonância Magnética , Fosfatidilcolinas/química , Polímeros/química
20.
Front Mol Biosci ; 6: 83, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608287

RESUMO

MHC class II receptors carry important function in adaptive immunity and their malfunctioning is associated with diabetes type I, chronic inflammatory diseases and other autoimmune diseases. The protein assembles from the DQ alpha-1 and DQ beta-1 subunits where the transmembrane domains of these type I membrane proteins have been shown to be involved in homo- and heterodimer formation. Furthermore, the DQ alpha 1 chain carries a sequence motif that has been first identified in the context of p24, a protein involved in the formation of COPI vesicles of the intracellular transport machinery, to specifically interact with sphingomyelin-C18 (SM-C18). Here we investigated the membrane interactions and dynamics of DQ beta-1 in liquid crystalline POPC phospholipid bilayers by oriented 15N solid-state NMR spectroscopy. The 15N resonances are indicative of a helical tilt angle of the membrane anchor sequence around 20°. Two populations can be distinguished by their differential dynamics probably corresponding the DQ beta-1 mono- and homodimer. Whereas, this equilibrium is hardly affected by the addition of 5 mole% SM-C18 a single population is visible in DMPC lipid bilayers suggesting that the lipid saturation is an important parameter. Furthermore, the DQ alpha-1, DQ beta-1 and p24 transmembrane helical domains were reconstituted into POPC or POPC/SM-C18 lipid bilayers where the fatty acyl chain of either the phosphatidylcholine or of the sphingolipid have been deuterated. Interestingly in the presence of both sphingolipid and polypeptide a strong decrease in the innermost membrane order of the POPC palmitoyl chain is observed, an effect that is strongest for DQ beta-1. In contrast, for the first time the polypeptide interactions were monitored by deuteration of the stearoyl chain of SM-C18. The resulting 2H solid-state NMR spectra show an increase in order for p24 and DQ alpha-1 which both carry the SM recognition motif. Thereby the data are suggestive that SM-C18 together with the transmembrane domains form structures imposing positive curvature strain on the surrounding POPC lipids. This effect is attenuated when SM-C18 is recognized by the protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA