Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834956

RESUMO

An improved understanding of an ovary's structures is highly desirable to support advances in folliculogenesis knowledge and reproductive medicine, with particular attention to fertility preservation options for prepubertal girls with malignant tumors. Although currently the golden standard for structural analysis is provided by combining histological sections, staining, and visible 2D microscopic inspection, synchrotron radiation phase-contrast microtomography is becoming a new challenge for three-dimensional studies at micrometric resolution. To this aim, the proper use of contrast agents can improve the visualization of internal structures in ovary tissues, which normally present a low radiopacity. In this study, we report a comparison of four staining protocols, based on iodine or tungsten containing agents, applied to bovine ovarian tissues fixed in Bouin's solution. The microtomography (microCT) analyses at two synchrotron facilities under different set-ups were performed at different energies in order to maximize the image contrast. While tungsten-based agents allow large structures to be well identified, Iodine ones better highlight smaller features, especially when acquired above the K-edge energy of the specific metal. Further scans performed at lower energy where the setup was optimized for overall quality and sensitivity from phase-contrast still provided highly resolved visualization of follicular and intrafollicular structures at different maturation stages, independent of the staining protocol. The analyses were complemented by X-ray Fluorescence mapping on 2D sections, showing that the tungsten-based agent has a higher penetration in this type of tissues.


Assuntos
Imageamento Tridimensional , Iodo , Humanos , Feminino , Animais , Bovinos , Imageamento Tridimensional/métodos , Microscopia , Raios X , Microtomografia por Raio-X/métodos , Ovário , Tungstênio , Meios de Contraste/química
2.
Proc Natl Acad Sci U S A ; 116(30): 14893-14898, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285331

RESUMO

Fibrous particles interact with cells and organisms in complex ways that can lead to cellular dysfunction, cell death, inflammation, and disease. The development of conductive transparent networks (CTNs) composed of metallic silver nanowires (AgNWs) for flexible touchscreen displays raises new possibilities for the intimate contact between novel fibers and human skin. Here, we report that a material property, nanowire-bending stiffness that is a function of diameter, controls the cytotoxicity of AgNWs to nonimmune cells from humans, mice, and fish without deterioration of critical CTN performance parameters: electrical conductivity and optical transparency. Both 30- and 90-nm-diameter AgNWs are readily internalized by cells, but thinner NWs are mechanically crumpled by the forces imposed during or after endocytosis, while thicker nanowires puncture the enclosing membrane and release silver ions and lysosomal contents to the cytoplasm, thereby initiating oxidative stress. This finding extends the fiber pathology paradigm and will enable the manufacture of safer products incorporating AgNWs.


Assuntos
Endossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Lisossomos/metabolismo , Nanofios/toxicidade , Animais , Linhagem Celular , Células Cultivadas , Condutividade Elétrica , Fibroblastos/metabolismo , Peixes , Humanos , Camundongos , Nanofios/química , Estresse Oxidativo , Prata/química
3.
J Synchrotron Radiat ; 26(Pt 5): 1751-1762, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490167

RESUMO

X-ray ptychography is a coherent diffraction imaging technique with a high resolving power and excellent quantitative capabilities. Although very popular in synchrotron facilities nowadays, its implementation with X-ray energies above 15 keV is very rare due to the challenges imposed by the high energies. Here, the implementation of high-energy X-ray ptychography at 17 and 33.6 keV is demonstrated and solutions to overcome the important challenges are provided. Among the particular aspects addressed are the use of an efficient high-energy detector, a long synchrotron beamline for the high degree of spatial coherence, a beam with 1% monochromaticity providing high flux, and efficient multilayer coated Kirkpatrick-Baez X-ray optics to shape the beam. The constraints imposed by the large energy bandwidth are carefully analyzed, as well as the requirements to sample correctly the high-energy diffraction patterns with small speckle size. In this context, optimized scanning trajectories allow the total acquisition time to be reduced by up to 35%. The paper explores these innovative solutions at the ID16A nano-imaging beamline by ptychographic imaging of a 200 nm-thick gold lithography sample.


Assuntos
Óptica e Fotônica/instrumentação , Intensificação de Imagem Radiográfica/instrumentação , Síncrotrons , Desenho de Equipamento , Ouro/química , Modelos Teóricos , Difração de Raios X , Raios X
4.
Reprod Biomed Online ; 37(2): 153-162, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29802069

RESUMO

RESEARCH QUESTION: Does synchrotron X-ray fluorescence (XRF) provide novel chemical information for the evaluation of human ovarian tissue cryopreservation protocols? DESIGN: Tissues from five patients undergoing laparoscopic surgery for benign gynaecological conditions were fixed for microscopic analysis either immediately or after cryopreservation. After fixation, fresh and slowly frozen samples were selected by light microscopy and transmission electron microscopy, and subsequently analysed with synchrotron XRF microscopy at different incident energies. RESULTS: The distributions of elements detected at 7.3 keV (S, P, K, Cl, Fe, and Os) and 1.5 keV (Na and Mg) were related to the changes revealed by light microscopy and transmission electron microscopy analyses. The light elements showed highly informative findings. The S distribution was found to be an indicator of extracellular component changes in the stromal tissues of the freeze-stored samples, further revealed by the transmission electron microscopy analyses. Low-quality follicles, frequent in the freeze-thawed tissues, showed a high Na level in the ooplasm. On the contrary, good-quality follicles were detected by a homogeneous Cl distribution. The occurrence of vacuolated follicles increased after cryopreservation, and the XRF analyses showed that the vacuolar structures contained mainly Cl and Na. CONCLUSIONS: The study demonstrates that elemental imaging techniques, particularly revealing the distribution of light elements, could be useful in establishing new cryopreservation protocols.


Assuntos
Criopreservação/métodos , Preservação de Órgãos/métodos , Ovário/ultraestrutura , Feminino , Humanos , Microscopia Eletrônica de Transmissão , Folículo Ovariano/ultraestrutura
5.
Connect Tissue Res ; 59(sup1): 67-73, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29745812

RESUMO

Avian eggshells are composed of several layers made of organic compounds and a mineral phase (calcite), and the general structure is basically the same in all species. A comparison of the structure, crystallography, and chemical composition shows that despite an overall similarity, each species has its own structure, crystallinity, and composition. Eggshells are a perfect example of the crystallographic versus biological concept of the formation and growth mechanisms of calcareous biominerals: the spherulitic-columnar structure is described as "a typical case of competitive crystal growth", but it is also said that the eggshell matrix components regulate eggshell mineralization. Electron back scattered diffraction (EBSD) analyses show that the crystallinity differs between different species. Nevertheless, the three layers are composed of rounded granules, and neither facets nor angles are visible. In-situ analyses show the heterogeneous distribution of chemical elements throughout the thickness of single eggshell. The presence of organic matrices other than the outer and inner membranes in eggshells is confirmed by thermograms and infrared spectrometry, and the differences in quality and quantity depend on the species. Thus, as in other biocrystals, crystal growth competition is not enough to explain these differences, and there is a strong biological control of the eggshell secretion.


Assuntos
Biomineralização , Aves , Carbonato de Cálcio/química , Casca de Ovo/química , Animais , Especificidade da Espécie
6.
J Struct Biol ; 196(2): 206-222, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27612582

RESUMO

During premolt, crayfish develop deposits of calcium ions, called gastroliths, in their stomach wall. The stored calcium is used for the calcification of parts of the skeleton regularly renewed for allowing growth. Structural and molecular analyses of gastroliths have been primarily performed on three crayfish species, Orconectes virilis, Procambarus clarkii, and more recently, Cherax quadricarinatus. We have performed high-resolution analyses of gastroliths from the native noble crayfish, Astacus astacus, focusing on the microstructure, the mineralogical and elemental composition and distribution in a comparative perspective. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) observations showed a classical layered microstructure composed of 200-nm diameter granules aligned along fibers. These granules are themselves composed of agglomerated nanogranules of 50nm-mean diameters. Denser regions of bigger fused granules are also present. Micro-Raman spectroscopy show that if A. astacus gastroliths, similarly to the other analyzed gastroliths, are mainly composed of amorphous calcium carbonate (ACC), they are also rich in amorphous calcium phosphate (ACP). The presence of a carotenoid pigment is also observed in A. astacus gastrolith contrary to C. quadricarinatus. Energy-dispersive X-ray spectroscopy (EDX) analyses demonstrate the presence of minor elements such as Mg, Sr, Si and P. The distribution of this last element is particularly heterogeneous. X-ray absorption near edge structure spectroscopy (XANES) reveals an alternation of layers more or less rich in phosphorus evidenced in the mineral phase as well as in the organic matrix in different molecular forms. Putative functions of the different P-comprising molecules are discussed.


Assuntos
Astacoidea/anatomia & histologia , Calcificação Fisiológica , Cálcio/metabolismo , Animais , Astacoidea/química , Carbonato de Cálcio/análise , Fosfatos de Cálcio/análise
7.
Anal Chem ; 88(7): 3826-35, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26959687

RESUMO

Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (ß-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.


Assuntos
Cálcio/química , Osso Cortical/química , Minerais/química , Espectroscopia por Absorção de Raios X , Fosfatos de Cálcio/química , Simulação por Computador , Fluorescência , Humanos , Análise Espectral Raman , Raios X
8.
Microsc Microanal ; 22(1): 22-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26818557

RESUMO

The crayfish Cherax quadricarinatus stores calcium ions, easily mobilizable after molting, for calcifying parts of the new exoskeleton. They are chiefly stored as amorphous calcium carbonate (ACC) during each premolt in a pair of gastroliths synthesized in the stomach wall. How calcium carbonate is stabilized in the amorphous state in such a biocomposite remains speculative. The knowledge of the microstructure at the nanometer level obtained by field emission scanning electron microscopy and atomic force microscopy combined with scanning electron microscopy energy-dispersive X-ray spectroscopy, micro-Raman and X-ray absorption near edge structure spectroscopy gave relevant information on the elaboration of such an ACC-stabilized biomineral. We observed nanogranules distributed along chitin-protein fibers and the aggregation of granules in thin layers. AFM confirmed the nanolevel structure, showing granules probably surrounded by an organic layer and also revealing a second level of aggregation as described for other crystalline biominerals. Raman analyses showed the presence of ACC, amorphous calcium phosphate, and calcite. Elemental analyses confirmed the presence of elements like Fe, Na, Mg, P, and S. P and S are heterogeneously distributed. P is present in both the mineral and organic phases of gastroliths. S seems present as sulfate (probably as sulfated sugars), sulfonate, sulfite, and sulfoxide groups and, in a lesser extent, as sulfur-containing amino acids.


Assuntos
Astacoidea/química , Carbonato de Cálcio/análise , Fosfatos de Cálcio/análise , Estômago/química , Estômago/ultraestrutura , Animais , Quitina/análise , Substâncias Macromoleculares/análise , Microscopia de Força Atômica , Proteínas/análise , Análise Espectral
9.
Microsc Microanal ; 22(5): 1062-1071, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27619825

RESUMO

Asbestos bodies are the histological hallmarks of asbestos exposure. Both conventional and advanced techniques are used to evaluate abundance and composition in histological samples. We previously reported the possibility of using synchrotron X-ray fluorescence microscopy (XFM) for analyzing the chemical composition of asbestos bodies directly in lung tissue samples. Here we applied a high-performance synchrotron X-ray fluorescence (XRF) set-up that could allow new protocols for fast monitoring of the occurrence of asbestos bodies in large histological sections, improving investigation of the related chemical changes. A combination of synchrotron X-ray transmission and fluorescence microscopy techniques at different energies at three distinct synchrotrons was used to characterize asbestos in paraffinated lung tissues. The fast chemical imaging of the XFM beamline (Australian Synchrotron) demonstrates that asbestos bodies can be rapidly and efficiently identified as co-localization of high calcium and iron, the most abundant elements of these formations inside tissues (Fe up to 10% w/w; Ca up to 1%). By following iron presence, we were also able to hint at small asbestos fibers in pleural spaces. XRF at lower energy and at higher spatial resolution was afterwards performed to better define small fibers. These analyses may predispose for future protocols to be set with laboratory instruments.


Assuntos
Amianto/química , Asbestose/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pleura/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Austrália , Exposição Ambiental , Humanos , Masculino , Microscopia de Fluorescência , Raios X
10.
Hippocampus ; 24(5): 598-610, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24500839

RESUMO

Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful tool for in vivo tract tracing or functional imaging of the central nervous system. However Mn(2+) may be toxic at high levels. In this study, we addressed the impact of Mn(2+) on mouse hippocampal neurons (HN) and neuron-like N2a cells in culture, using several approaches. Both HN and N2a cells not exposed to exogenous MnCl2 were shown by synchrotron X-ray fluorescence to contain 5 mg/g Mn. Concentrations of Mn(2+) leading to 50% lethality (LC50) after 24 h of incubation were much higher for N2a cells (863 mM) than for HN (90 mM). The distribution of Mn(2+) in both cell types exposed to Mn(2+) concentrations below LC50 was perinuclear whereas that in cells exposed to concentrations above LC50 was more diffuse, suggesting an overloading of cell storage/detoxification capacity. In addition, Mn(2+) had a cell-type and dose-dependent impact on the total amount of intracellular P, Ca, Fe and Zn measured by synchrotron X-ray fluorescence. For HN neurons, immunofluorescence studies revealed that concentrations of Mn(2+) below LC50 shortened neuritic length and decreased mitochondria velocity after 24 h of incubation. Similar concentrations of Mn(2+) also facilitated the opening of the mitochondrial permeability transition pore in isolated mitochondria from rat brains. The sensitivity of primary HN to Mn(2+) demonstrated here supports their use as a relevant model to study Mn(2+) -induced neurotoxicity.


Assuntos
Hipocampo/citologia , Manganês/farmacologia , Neurônios/efeitos dos fármacos , Oligoelementos/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/patologia , Neurônios/ultraestrutura , Fósforo/metabolismo , Espectrometria por Raios X , Fatores de Tempo , Zinco/metabolismo
11.
Anal Bioanal Chem ; 406(12): 2809-16, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24618991

RESUMO

We used synchrotron X-ray fluorescence to create the first semiquantitative, submicron resolution, element distribution maps of P, S, K, and Ca, in situ, in fungal samples. Data collection was performed at the European Synchrotron Radiation Facility beam line ID21, Grenoble, France. We studied developing hyphae, septa, and conidiophores in Aspergillus nidulans, comparing wild type and two cell wall biosynthesis gene deletion strains. The latter encode sequential enzymes for biosynthesis of galactofuranose, a minor wall carbohydrate. Each gene deletion caused hyphal morphogenesis defects, and reduced both colony growth and sporulation 500-fold. Elemental imaging has helped elucidate biochemical changes in the phenotype induced by the gene deletions that were not apparent from morphological examination. Here, we examined S as a proxy for protein content, P for nucleic acid content, as well as Ca and K, which also have important metabolic roles. Element distributions in wild-type fungi reflect biological aspects already known or expected from other types of analysis; however, the application of X-ray fluorescence (XRF) imaging reveals aspects of gene deletion phenotypes that were not previously available. We have demonstrated that deleting a dispensable gene involved in galactose metabolism (ugeA) and one involved in biosynthesis of a minor cell wall component (ugmA) led to changes in hyphal elemental distribution that may have resulted from compromised wall composition.


Assuntos
Aspergillus nidulans/química , Aspergillus nidulans/genética , Parede Celular/química , Deleção de Genes , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Parede Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/química , Hifas/genética , Hifas/crescimento & desenvolvimento , Mutação , Esporos Fúngicos/química , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Síncrotrons
12.
J Photochem Photobiol B ; 259: 113019, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217730

RESUMO

Photobiomodulation therapy (PBMT) is a form of treatment commonly used for routine clinical applications, such as wound healing of the skin and reduction of inflammation. Additionally, PBMT has been explored for its potential in pain relief. In this work, we investigated the effect of PBMT on ion content within the 50B11 sensory neurons cell line in vitro using X-Ray fluorescence (XRF) and atomic force microscope (AFM) analysis. Two irradiation protocols were selected utilizing near-infrared laser lights at 800 and 970 nm, with cell fixation immediately following irradiation. Results showed a decrease in Calcium content after irradiation with both protocols, and with lidocaine, used as an analgesic control. Furthermore, a reduction in Potassium content was observed, particularly evident when normalized to cellular volume. These findings provide valuable insights into the molecular impact of PBMT within 50B11 sensory neurons under normal conditions. Such understanding may contribute to the wider adoption of PBMT as a therapeutic approach.


Assuntos
Cálcio , Raios Infravermelhos , Terapia com Luz de Baixa Intensidade , Células Receptoras Sensoriais , Animais , Células Receptoras Sensoriais/efeitos da radiação , Células Receptoras Sensoriais/metabolismo , Cálcio/metabolismo , Camundongos , Linhagem Celular , Espectrometria por Raios X , Microscopia de Força Atômica , Potássio/metabolismo , Potássio/química , Lidocaína/farmacologia
13.
J Med Chem ; 67(8): 6189-6206, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38577779

RESUMO

Identification of intracellular targets of anticancer drug candidates provides key information on their mechanism of action. Exploiting the ability of the anticancer (C∧N)-chelated half-sandwich iridium(III) complexes to covalently bind proteins, click chemistry with a bioorthogonal azido probe was used to localize a phenyloxazoline-chelated iridium complex within cells and profile its interactome at the proteome-wide scale. Proteins involved in protein folding and actin cytoskeleton regulation were identified as high-affinity targets. Upon iridium complex treatment, the folding activity of Heat Shock Protein HSP90 was inhibited in vitro and major cytoskeleton disorganization was observed. A wide array of imaging and biochemical methods validated selected targets and provided a multiscale overview of the effects of this complex on live human cells. We demonstrate that it behaves as a dual agent, inducing both electrophilic and oxidative stresses in cells that account for its cytotoxicity. The proposed methodological workflow can open innovative avenues in metallodrug discovery.


Assuntos
Antineoplásicos , Complexos de Coordenação , Irídio , Estresse Oxidativo , Humanos , Irídio/química , Irídio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Química Click
14.
J Neurochem ; 124(2): 250-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23106162

RESUMO

Transition metals have been suggested to play a pivotal role in the pathogenesis of Parkinson's disease. X-ray microscopy combined with a cryogenic setup is a powerful method for elemental imaging in low concentrations and high resolution in intact cells, eliminating the need for fixation and sectioning of the specimen. Here, we performed an elemental distribution analysis in cultured primary midbrain neurons with a step size in the order of 300 nm and ~ 0.1 ppm sensitivity under cryo conditions by using X-ray fluorescence microscopy. We report the elemental mappings on the subcellular level in primary mouse dopaminergic (DAergic) and non-DAergic neurons after treatment with transition metals. Application of Fe(2+) resulted in largely extracellular accumulation of iron without preference for the neuronal transmitter subtype. A quantification of different Fe oxidation states was performed using X-ray absorption near edge structure analysis. After treatment with Mn(2+) , a cytoplasmic/paranuclear localization of Mn was observed preferentially in DAergic neurons, while no prominent signal was detectable after Mn(3+) treatment. Immunocytochemical analysis correlated the preferential Mn uptake to increased expression of voltage-gated calcium channels in DAergic neurons. We discuss the implications of this differential elemental distribution for the selective vulnerability of DAergic neurons and Parkinson's disease pathogenesis.


Assuntos
Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/fisiologia , Ferro/metabolismo , Manganês/metabolismo , Espectrometria por Raios X/métodos , Animais , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Cultura Primária de Células
15.
Part Fibre Toxicol ; 10: 24, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23800198

RESUMO

BACKGROUND: Carbon nanotubes (CNT) are a family of materials featuring a large range of length, diameter, numbers of walls and, quite often metallic impurities coming from the catalyst used for their synthesis. They exhibit unique physical properties, which have already led to an extensive development of CNT for numerous applications. Because of this development and the resulting potential increase of human exposure, an important body of literature has been published with the aim to evaluate the health impact of CNT. However, despite evidences of uptake and long-term persistence of CNT within macrophages and the central role of those cells in the CNT-induced pulmonary inflammatory response, a limited amount of data is available so far on the CNT fate inside macrophages. Therefore, the overall aim of our study was to investigate the fate of pristine single walled CNT (SWCNT) after their internalization by macrophages. METHODS: To achieve our aim, we used a broad range of techniques that aimed at getting a comprehensive characterization of the SWCNT and their catalyst residues before and after exposure of murine macrophages: X-ray diffraction (XRD), High Resolution (HR) Transmission Electron Microscopy (TEM), High Angle Annular Dark Field-Scanning TEM (HAADF-STEM) coupled to Electron Energy Loss Spectroscopy (EELS), as well as micro-X-ray fluorescence mapping (µXRF), using synchrotron radiation. RESULTS: We showed 1) the rapid detachment of part of the iron nanoparticles initially attached to SWCNT which appeared as free iron nanoparticles in the cytoplasm and nucleus of CNT-exposed murine macrophages, and 2) that blockade of intracellular lysosomal acidification prevented iron nanoparticles detachment from CNT bundles and protected cells from CNT downstream toxicity. CONCLUSIONS: The present results, while obtained with pristine SWCNT, could likely be extended to other catalyst-containing nanomaterials and surely open new ways in the interpretation and understanding of CNT toxicity.


Assuntos
Compostos de Ferro/metabolismo , Macrófagos/metabolismo , Nanopartículas Metálicas , Nanotubos de Carbono/análise , Animais , Catepsina B/metabolismo , Linhagem Celular , Concentração de Íons de Hidrogênio , Compostos de Ferro/toxicidade , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Macrolídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/toxicidade , Espectrometria por Raios X , Espectroscopia de Perda de Energia de Elétrons , Síncrotrons , Difração de Raios X
16.
Sci Total Environ ; 864: 161028, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549535

RESUMO

BACKGROUND: Endometriosis is a disease affecting 10-15 % of women worldwide, consisting in the ectopic growth of endometrial cells outside the uterine cavity. Whist the pathogenetic mechanisms of endometriosis remain elusive and contemplating even environmental causes, iron deposits are common in endometrial lesions, indicating an altered iron metabolism at this level. This study was undertaken to reveal a possible relationship between iron dysmetabolism and accumulation of environmental metals. METHODS: By combining histological and histochemical analysis (H&E and Perl's staining) with µ- and nano- synchrotron-based (SR-based) X-ray Fluorescence (XRF) microscopy, we investigated the distribution of iron and other elements in the ovarian endometriomas of 12 endometriosis patients and in 7 healthy endometrium samples. RESULTS: XRF microscopy expanded the findings obtained by Perl's staining, revealing with an exceptional sensitivity intracellular features of iron accumulation in the epithelial endometrium, stroma and macrophages of the endometriotic lesions. XRF evidenced that iron was specifically accumulated in multiple micro aggregates, reaching concentrations up to 10-20 % p/p. Moreover, by XRF analysis we revealed for the first time the retention of a number of exogenous and potentially toxic metals such as Pb, Br, Ti, Al Cr, Si and Rb partially or totally co-localizing with iron. CONCLUSION: µXRF reveals accumulation and colocalization of iron and environmental metals in human ovarian endometriosis, suggesting a role in the pathogenesis of endometriosis.


Assuntos
Endometriose , Doenças Uterinas , Humanos , Feminino , Endometriose/metabolismo , Endometriose/patologia , Ferro/toxicidade , Ferro/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Células Epiteliais/patologia
17.
Anal Chem ; 83(11): 4220-7, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21500858

RESUMO

Because of their complex genesis, rocks and geomaterials are commonly polycrystalline heterogeneous systems, with various scale-level chemical and structural heterogeneities. Like most other µ-analytical techniques relying on scanning instruments with pencil-beam, the X-ray absorption near edge structure (XANES) technique allows elemental oxidation states to be probed with high spatial resolution but suffers from long acquisition times, imposing practical limits on the field of view. Now, regions of interest of sample are generally several orders of magnitude larger than the beam size. Here, we show the potential of coupling XANES and full-field absorption radiographies with a large hard X-ray beam. Thanks to a new setup, which allows both the acquisition of a XANES image stack and the execution of polarization contrast imaging, 1 to 4 mega-pixel crystallographic orientations and Fe oxidation state mapping corrected from polarization effects are obtained in a couple of hours on polycrystalline materials with submicrometric resolution. The demonstration is first carried out on complex metamorphic rocks, where Fe(3+)/Fe(total) images reveal subtle redox variations within single mineralogical phases. A second application concerns a bentonite analogue considered for nuclear waste and CO(2) storage. Proportion mappings of finely mixed phases are extracted from hyperspectral data, imaging the spatial progress of reaction processes essential for the safety of such storage systems.

18.
J Synchrotron Radiat ; 18(Pt 3): 442-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21525653

RESUMO

The fabrication and characterization of Fresnel zone plates (FZPs) for hard X-ray microscopy applications are reported. High-quality 500 nm- and 1 µm-thick Au FZPs with outermost zone widths down to 50 nm and 70 nm, respectively, and with diameters up to 600 µm were fabricated. The diffraction efficiencies of the fabricated FZPs were measured for a wide range of X-ray energies (2.8-13.2 keV) showing excellent values up to 65-75% of the theoretical values, reflecting the good quality of the FZPs. Spatially resolved diffraction efficiency measurements indicate the uniformity of the FZPs and a defect-free structure.

19.
Clin Exp Pharmacol Physiol ; 38(12): 834-45, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957877

RESUMO

1. Spatially resolved X-ray fluorescence (XRF) spectroscopy with synchrotron radiation is a technique that allows imaging and quantification of chemical elements in biological specimens with high sensitivity. In the present study, we applied XRF techniques at a macro and micro level to carry out drug distribution studies on ex vivo models to confirm the hepatobiliary disposition of the Gd-based magnetic resonance imaging contrast agent B22956/1. 2. Gd presence was selectively quantified allowing the determination of the time dependent disappearance of the drug from blood and its hepatic accumulation in mice after administration. Elemental mapping highlighted the drug distribution differences between healthy and diseased livers. XRF microanalyses showed that in CCl(4) -induced hepatitis, B22956/1 has greatly reduced hepatic accumulation, shown as a 20-fold reduction of Gd presence. Furthermore, a significant increase of Fe presence was found in steatotic compared with healthy livers, in line with the disease features. 3. The present results show that XRF might be useful in preclinical pharmacological studies with drugs containing exogenous elements. Furthermore, quantitative and high-sensitivity elemental mapping allows simultaneous detection of chemical variation, showing pathological conditions. This approach was useful in suggesting reduced B22956/1 accumulation in steatotic livers, thus opening possible new diagnostic perspectives for this drug.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio/farmacocinética , Fígado/metabolismo , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/farmacocinética , Espectrometria por Raios X/métodos , Animais , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/metabolismo , Feminino , Hepatite/diagnóstico , Hepatite/metabolismo , Ferro/análise , Camundongos , Camundongos Endogâmicos CBA
20.
Sci Adv ; 7(29)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34261651

RESUMO

Subsurface habitats on Earth host an extensive extant biosphere and likely provided one of Earth's earliest microbial habitats. Although the site of life's emergence continues to be debated, evidence of early life provides insights into its early evolution and metabolic affinity. Here, we present the discovery of exceptionally well-preserved, ~3.42-billion-year-old putative filamentous microfossils that inhabited a paleo-subseafloor hydrothermal vein system of the Barberton greenstone belt in South Africa. The filaments colonized the walls of conduits created by low-temperature hydrothermal fluid. Combined with their morphological and chemical characteristics as investigated over a range of scales, they can be considered the oldest methanogens and/or methanotrophs that thrived in an ultramafic volcanic substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA