Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS Biol ; 20(8): e3001702, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35925899

RESUMO

Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.


Assuntos
Kelp , Carbono , Sequestro de Carbono , Mudança Climática , Ecossistema
2.
Am Nat ; 200(1): 168-180, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35737985

RESUMO

AbstractThis essay explores shifting scientific understandings of fish and the evolution of fisheries science, and it grapples with colonialism as a system of power. We trace the rise of fisheries science to a time when Western nation-states were industrializing fishing fleets and competing for access to distant fishing grounds. A theory of fishing called "maximum sustainable yield" (MSY) that understands fish species in aggregate was espoused. Although alternatives to MSY have been developed, decision-making continues to be informed by statistical models developed within fisheries science. A challenge for structured management systems now rests in attending to different systems of knowledge and addressing local objectives, values, and circumstances. To deepen and illustrate key points, we examine Pacific herring (Clupea pallasii) and the expansion of commercial herring fisheries and state-led management in British Columbia, Canada. A feedback between colonialism and fisheries science is evident: colonialism generated the initial conditions for expansion and has been reinforced through the implementation of approaches and tools from fisheries science that define and quantify conservation in particular ways. Some features may be unique to the herring illustration, but important aspects of the feedback are more broadly generalizable. We propose three interconnected goals: (a) transform the siloed institutions and practices of Western science, (b) reimagine and rebuild pathways between information (including diverse values and perspectives) and decision-making, and (c) devolve governance authority and broaden governance processes such that multiple ways of knowing share equal footing.


Assuntos
Colonialismo , Pesqueiros , Animais , Colúmbia Britânica , Conservação dos Recursos Naturais , Retroalimentação , Peixes , Humanos , Modelos Estatísticos
3.
Proc Biol Sci ; 289(1976): 20220526, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703054

RESUMO

A major challenge in sustainability science is identifying targets that maximize ecosystem benefits to humanity while minimizing the risk of crossing critical system thresholds. One critical threshold is the biomass at which populations become so depleted that their population growth rates become negative-depensation. Here, we evaluate how the value of monitoring information increases as a natural resource spends more time near the critical threshold. This benefit emerges because higher monitoring precision promotes higher yield and a greater capacity to recover from overharvest. We show that precautionary buffers that trigger increased monitoring precision as resource levels decline may offer a way to minimize monitoring costs and maximize profits. In a world of finite resources, improving our understanding of the trade-off between precision in estimates of population status and the costs of mismanagement will benefit stakeholders that shoulder the burden of these economic and social costs.


Assuntos
Ecossistema , Pesqueiros , Biomassa , Conservação dos Recursos Naturais
4.
Proc Natl Acad Sci U S A ; 116(44): 22106-22114, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611398

RESUMO

Historical ecology can provide insights into the long-term and complex relationships between humans and culturally important species and ecosystems, thereby extending baselines for modern management. We bring together paleoecological, archaeological, and modern clam records to explore the relationship between humans and butter clams (Saxidomus gigantea) throughout the Holocene in the northern Salish Sea of British Columbia, Canada. We compare butter clam size and growth patterns from different temporal, environmental, and cultural contexts spanning 11,500 y to present. Butter clam size and growth were restricted in early postglacial times but increased over the next few millennia. During the early-Late Holocene, humans took increasing advantage of robust clam populations and after 3.5 ka, began constructing clam gardens (intertidal rock-walled terraces). Environmental and cultural variables, including coarse substrate, stabilized sea surface temperature, and the presence of a clam garden wall, increased clam growth throughout the Holocene. Measurements of clams collected in active clam gardens and deposited in middens suggest that clam gardens as well as other mariculture activities enhanced clam production despite increased harvesting pressure. Since European contact, decline of traditional management practices and increases in industrial activities are associated with reduced clam size and growth similar to those of the early postglacial clams. Deeper-time baselines that more accurately represent clam population variability and allow us to assess magnitudes of change throughout time as well as the complex interactions among humans and clams are useful for modern marine resource management.


Assuntos
Aquicultura/métodos , Bivalves/fisiologia , Animais , Bivalves/crescimento & desenvolvimento , Tamanho Corporal , Colúmbia Britânica , Mudança Climática , Ecossistema , Humanos
5.
Proc Natl Acad Sci U S A ; 116(30): 15080-15085, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31285351

RESUMO

Understanding how trophic dynamics drive variation in biodiversity is essential for predicting the outcomes of trophic downgrading across the world's ecosystems. However, assessing the biodiversity of morphologically cryptic lineages can be problematic, yet may be crucial to understanding ecological patterns. Shifts in keystone predation that favor increases in herbivore abundance tend to have negative consequences for the biodiversity of primary producers. However, in nearshore ecosystems, coralline algal cover increases when herbivory is intense, suggesting that corallines may uniquely benefit from trophic downgrading. Because many coralline algal species are morphologically cryptic and their diversity has been globally underestimated, increasing the resolution at which we distinguish species could dramatically alter our conclusions about the consequences of trophic dynamics for this group. In this study, we used DNA barcoding to compare the diversity and composition of cryptic coralline algal assemblages at sites that differ in urchin biomass and keystone predation by sea otters. We show that while coralline cover is greater in urchin-dominated sites (or "barrens"), which are subject to intense grazing, coralline assemblages in these urchin barrens are significantly less diverse than in kelp forests and are dominated by only 1 or 2 species. These findings clarify how food web structure relates to coralline community composition and reconcile patterns of total coralline cover with the widely documented pattern that keystone predation promotes biodiversity. Shifts in coralline diversity and distribution associated with transitions from kelp forests to urchin barrens could have ecosystem-level effects that would be missed by ignoring cryptic species' identities.


Assuntos
Biodiversidade , Lontras/fisiologia , Filogenia , Rodófitas/classificação , Ouriços-do-Mar/fisiologia , Animais , Antozoários/fisiologia , Recifes de Corais , Código de Barras de DNA Taxonômico , DNA de Algas/genética , Ecossistema , Cadeia Alimentar , Kelp/classificação , Kelp/genética , Oceano Pacífico , Comportamento Predatório/fisiologia , Rodófitas/genética
6.
Ecol Appl ; 30(3): e02051, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31820525

RESUMO

Unanticipated declines among exploited species have commonly occurred despite harvests that appeared sustainable prior to collapse. This is particularly true in the oceans where spatial scales of management are often mismatched with spatially complex metapopulations. We explore causes, consequences, and potential solutions for spatial mismatches in harvested metapopulations in three ways. First, we generate novel theory illustrating when and how harvesting metapopulations increases spatial variability and in turn masks local-scale volatility. Second, we illustrate why spatial variability in harvested metapopulations leads to negative consequences using an empirical example of a Pacific herring metapopulation. Finally, we construct a numerical management strategy evaluation model to identify and highlight potential solutions for mismatches in spatial scale and spatial variability. Our results highlight that spatial complexity can promote stability at large scales, however, ignoring spatial complexity produces cryptic and negative consequences for people and animals that interact with resources at small scales. Harvesting metapopulations magnifies spatial variability, which creates discrepancies between regional and local trends while increasing risk of local population collapses. Such effects asymmetrically impact locally constrained fishers and predators, which are more exposed to risks of localized collapses. Importantly, we show that dynamically optimizing harvest can minimize local risk without sacrificing yield. Thus, multiple nested scales of management may be necessary to avoid cryptic collapses in metapopulations and the ensuing ecological, social, and economic consequences.


Assuntos
Ecossistema , Peixes , Animais , Humanos , Oceanos e Mares , Dinâmica Populacional
7.
Proc Natl Acad Sci U S A ; 113(48): 13785-13790, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849580

RESUMO

Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y-1). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y-1), increases in 27% of ecoregions (0.015 to 0.11 y-1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.


Assuntos
Ecossistema , Florestas , Kelp/crescimento & desenvolvimento , Regiões Árticas , Mudança Climática , Oceanos e Mares
8.
Am Nat ; 192(1): 49-61, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29897803

RESUMO

The roles of dispersal and recruitment have long been a focal point in ecology and conservation. The adopted migrant hypothesis proposes a life history in which social learning transmits migratory knowledge between generations of iteroparous fish. Specifically, juveniles disperse from the parental spawning site, encounter and recruit to a local adult population, and learn migration routes between spawning and foraging habitats by following older, experienced fish. Although the adopted migrant life history may apply to many species of pelagic marine fishes, there is scant theoretical or empirical work on the consequent population dynamics. We developed and analyzed a mathematical model of this life history in which the recruitment of juveniles depends on the relative abundance of the local populations and recruitment overlap, which measures the ease with which juveniles are recruited by a nonparental population. We demonstrate that the adopted migrant life history can maintain spatial demographic structure among local populations, that it can also predispose local populations to collapse when a tipping point is crossed, and that recovery after collapse is impaired by reduced recruitment at small local population sizes.


Assuntos
Distribuição Animal , Migração Animal , Peixes , Modelos Biológicos , Aprendizado Social , Animais , Características de História de Vida , Dinâmica Populacional
9.
Proc Biol Sci ; 285(1883)2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30051864

RESUMO

While changes in the abundance of keystone predators can have cascading effects resulting in regime shifts, the role of mesopredators in these processes remains underexplored. We conducted annual surveys of rocky reef communities that varied in the recovery of a keystone predator (sea otter, Enhydra lutris) and the mass mortality of a mesopredator (sunflower sea star, Pycnopodia helianthoides) due to an infectious wasting disease. By fitting a population model to empirical data, we show that sea otters had the greatest impact on the mortality of large sea urchins, but that Pycnopodia decline corresponded to a 311% increase in medium urchins and a 30% decline in kelp densities. Our results reveal that predator complementarity in size-selective prey consumption strengthens top-down control on urchins, affecting the resilience of alternative reef states by reinforcing the resilience of kelp forests and eroding the resilience of urchin barrens. We reveal previously underappreciated species interactions within a 'classic' trophic cascade and regime shift, highlighting the critical role of middle-level predators in mediating rocky reef state transitions.


Assuntos
Cadeia Alimentar , Kelp , Lontras , Estrelas-do-Mar , Animais , Tamanho Corporal , Colúmbia Britânica , Densidade Demográfica
10.
Ecol Appl ; 27(3): 799-813, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27984678

RESUMO

Coastal communities worldwide rely on small-scale artisanal fisheries as a means of increasing food security and alleviating poverty. Even small-scale fishing activities, however, are prone to resource depletion and environmental degradation, which can erode livelihoods in the long run. Thus, there is a pressing need to identify viable and resilient artisanal fisheries, and generate knowledge to support management within the context of a rapidly changing climate. We examined the ecosystem-level consequences of an artisanal kelp fishery (Macrocystis pyrifera), finding small-scale harvest of this highly productive species poses minimal impacts on kelp recovery rates, survival, and biomass dynamics, and abundances of associated commercial and culturally important fish species. These results suggest that small-scale harvest poses minimal trade-offs for the other economic benefits provided by these ecosystems, and their inherent, spiritual, and cultural value to humans. However, we detected a negative impact of warmer seawater temperatures on kelp recovery rates following harvest, indicating that the viability of harvest, even at small scales, may be threatened by future increases in global ocean temperature. This suggests that negative impacts of artisanal fisheries may be more likely to arise in the context of a warming climate, further highlighting the widespread effects of global climate change on coastal fisheries and livelihoods.


Assuntos
Mudança Climática , Ecossistema , Pesqueiros , Kelp , Macrocystis , Colúmbia Britânica , Conservação dos Recursos Naturais , Dinâmica Populacional
11.
Proc Biol Sci ; 283(1833)2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27335422

RESUMO

Theory predicts that bottom-heavy biomass pyramids or 'stacks' should predominate in real-world communities if trophic-level increases with body size (mean predator-to-prey mass ratio (PPMR) more than 1). However, recent research suggests that inverted biomass pyramids (IBPs) characterize relatively pristine reef fish communities. Here, we estimated the slope of a kelp forest fish community biomass spectrum from underwater visual surveys. The observed biomass spectrum slope is strongly positive, reflecting an IBP. This is incongruous with theory because this steep positive slope would only be expected if trophic position decreased with increasing body size (consumer-to-resource mass ratio, less than 1). We then used δ(15)N signatures of fish muscle tissue to quantify the relationship between trophic position and body size and instead detected strong evidence for the opposite, with PPMR ≈ 1650 (50% credible interval 280-12 000). The natural history of kelp forest reef fishes suggests that this paradox could arise from energetic subsidies in the form of movement of mobile consumers across habitats, and from seasonally pulsed production inputs at small body sizes. There were four to five times more biomass at large body sizes (1-2 kg) than would be expected in a closed steady-state community providing a measure of the magnitude of subsidies.


Assuntos
Biomassa , Peixes , Cadeia Alimentar , Kelp , Animais
13.
Trends Ecol Evol ; 39(3): 217-220, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38278702

RESUMO

Current reductionist approaches to environmental governance cannot resolve social-ecological crises. Siloed institutions fail to address linked social and ecological processes, thereby neglecting issues of equity, justice, and cumulative effects. Global insights can be gained from Indigenous-led initiatives that support the resilience of relationships within and among places.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Política Ambiental , Meio Social
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220196, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37246378

RESUMO

With climate, biodiversity and inequity crises squarely upon us, never has there been a more pressing time to rethink how we conceptualize, understand and manage our relationship with Earth's biodiversity. Here, we describe governance principles of 17 Indigenous Nations from the Northwest Coast of North America used to understand and steward relationships among all components of nature, including humans. We then chart the colonial origins of biodiversity science and use the complex case of sea otter recovery to illuminate how ancestral governance principles can be mobilized to characterize, manage and restore biodiversity in more inclusive, integrative and equitable ways. To enhance environmental sustainability, resilience and social justice amid today's crises, we need to broaden who benefits from and participates in the sciences of biodiversity by expanding the values and methodologies that shape such initiatives. In practice, biodiversity conservation and natural resource management need to shift from centralized, siloed approaches to those that can accommodate plurality in values, objectives, governance systems, legal traditions and ways of knowing. In doing so, developing solutions to our planetary crises becomes a shared responsibility. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Assuntos
Biodiversidade , Justiça Social , Humanos , América do Norte , Clima , Conservação dos Recursos Naturais , Ecossistema
15.
Ecosystems ; 25(3): 548-566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509679

RESUMO

The historic extirpation and subsequent recovery of sea otters (Enhydra lutris) have profoundly changed coastal social-ecological systems across the northeastern Pacific. Today, the conservation status of sea otters is informed by estimates of population carrying capacity or growth rates independent of human impacts. However, archaeological and ethnographic evidence suggests that for millennia, complex hunting and management protocols by Indigenous communities limited sea otter abundance near human settlements to reduce the negative impacts of this keystone predator on shared shellfish prey. To assess relative sea otter prevalence in the Holocene, we compared the size structure of ancient California mussels (Mytilus californianus) from six archaeological sites in two regions on the Pacific Northwest Coast, to modern California mussels at locations with and without sea otters. We also quantified modern mussel size distributions from eight locations on the Central Coast of British Columbia, Canada, varying in sea otter occupation time. Comparisons of mussel size spectra revealed that ancient mussel size distributions are consistently more similar to modern size distributions at locations with a prolonged absence of sea otters. This indicates that late Holocene sea otters were maintained well below carrying capacity near human settlements as a result of human intervention. These findings illuminate the conditions under which sea otters and humans persisted over millennia prior to the Pacific maritime fur trade and raise important questions about contemporary conservation objectives for an iconic marine mammal and the social-ecological system in which it is embedded. Supplementary Information: The online version contains supplementary material available at 10.1007/s10021-021-00671-3.

16.
Environ Biol Fishes ; 105(10): 1381-1397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313613

RESUMO

Climate change is altering the distribution and composition of marine fish populations globally, which presents substantial risks to the social and economic well-being of humanity. While deriving long-term climatic baselines is an essential step for detecting and attributing the magnitude of climate change and its impacts, these baselines tend to be limited to historical datasets and palaeoecological sediment records. Here, we develop a method for estimating the 'ancient Mean Temperature of the Catch' (aMTC) using Indigenous fisheries catch records from two archaeological sites in the northeast Pacific. Despite different catch compositions, we observe an increase in aMTC over a 5,000-year period at two contemporaneously occupied archaeological sites in southwestern British Columbia, Canada. We document cooler catches from 5,000 to 3,000 cal yr BP and comparatively warmer catches from 1,800 to 250 cal yr BP. These warmer temperatures are broadly consistent with palaeoceanographic sea surface temperature proxies from British Columbia and Alaska. Because this method requires converting measures of fish bones into estimates of fish size structure, abundance, biomass, and finally aMTC, opportunities exist to account for both variation and uncertainty at every step. Nevertheless, given that preindustrial fisheries data are ubiquitous in coastal archaeological sites, this method has the potential to be applied globally to broaden the temporal and geographic scale of ocean temperature baselines. Supplementary Information: The online version contains supplementary material available at 10.1007/s10641-022-01243-7.

17.
Science ; 374(6565): 333-336, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648338

RESUMO

Most knowledge regarding the role of predators is ecological in nature. Here, we report how disturbance generated by sea otters (Enhydra lutris) digging for infaunal prey in eelgrass (Zostera marina) meadows increases genetic diversity by promoting conditions for sexual reproduction of plants. Eelgrass allelic richness and genotypic diversity were, respectively, 30 and 6% higher in areas where recovering sea otter populations had been established for 20 to 30 years than in areas where they had been present <10 years or absent >100 years. The influence of sea otter occupancy on the aforementioned measures of genetic diversity was stronger than those of depth, temperature, latitude, or meadow size. Our findings reveal an underappreciated evolutionary process by which megafauna may promote genetic diversity and ecological resilience.


Assuntos
Cadeia Alimentar , Variação Genética , Lontras/fisiologia , Zosteraceae/genética , Animais
18.
Ecology ; 91(6): 1763-73, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20583717

RESUMO

How the combination of positive and negative species interactions acts to drive community dynamics is a fundamental question in ecology. Here we explore one aspect of this question by expanding the theory of predator-mediated coexistence to include the potential role of facilitation between the predator and inferior competitor. To motivate and illustrate our simple model, we focus on sea-urchin-algae interactions in temperate rocky reef systems and incorporate recruitment facilitation, a common characteristic of marine systems. Specifically, the model represents sea urchin grazing on macroalgae, macroalgal competition with crustose coralline algae (CCA), and facilitation of sea urchin recruitment to CCA. These interactions generate alternative stable states, one dominated by macroalgae and the other by urchins, which do not occur when recruitment facilitation of urchins to CCA is ignored. Therefore, recruitment facilitation provides a possible mechanism for alternative kelp forest and urchin barren states in temperate marine systems, where storm events or harvesting of urchins or their predators can drive switches between states that are difficult to reverse. In systems with such dynamics, spatial management such as no-take marine reserves may play a crucial role in protecting community structure by increasing the resilience to shifts between states.


Assuntos
Ecossistema , Eucariotos/fisiologia , Ouriços-do-Mar/fisiologia , Animais , Clima , Comportamento Alimentar , Modelos Biológicos , Dinâmica Populacional
19.
Conserv Biol ; 24(2): 382-94, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20151987

RESUMO

Trophic cascades triggered by fishing have profound implications for marine ecosystems and the socioeconomic systems that depend on them. With the number of reported cases quickly growing, key features and commonalities have emerged. Fishery-induced trophic cascades often display differential response times and nonlinear trajectories among trophic levels and can be accompanied by shifts in alternative states. Furthermore, their magnitude appears to be context dependent, varying as a function of species diversity, regional oceanography, local physical disturbance, habitat complexity, and the nature of the fishery itself. To conserve and manage exploited marine ecosystems, there is a pressing need for an improved understanding of the conditions that promote or inhibit the cascading consequences of fishing. Future research should investigate how the trophic effects of fishing interact with other human disturbances, identify strongly interacting species and ecosystem features that confer resilience to exploitation, determine ranges of predator depletion that elicit trophic cascades, pinpoint antecedents that signal ecosystem state shifts, and quantify variation in trophic rates across oceanographic conditions. This information will advance predictive models designed to forecast the trophic effects of fishing and will allow managers to better anticipate and avoid fishery-induced trophic cascades.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Pesqueiros , Cadeia Alimentar , Animais , Peixes , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório
20.
Conserv Biol ; 23(4): 841-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19627316

RESUMO

A number of international treaties address the conservation of marine resources. The declining state of the world's oceans suggests that these treaties are not succeeding and could use improvement. The Convention on International Trade in Endangered Species (CITES) is increasingly embracing the conservation of marine species. We examine the evolution of marine species protection under CITES and illuminate some of the mechanisms used and challenges faced in implementing CITES protection. We found that clarification is needed on when and where CITES applies and how CITES should work with other treaties and institutions. The Society for Conservation Biology (SCB) can contribute to increased effectiveness of CITES for marine conservation. Foremost, the SCB community could foster dialogue on creating a broad vision of how CITES should apply to marine species and how it can synergistically interact with other important marine-conservation treaties and institutions. More specific contributions could focus on defining listing criteria for marine species, improving the science behind the nondetriment finding, and offering technical guidance on species proposals. A future role for SCB could be to contribute to the enhanced effectiveness of other marine conservation agreements such as the Convention on the Conservation of Migratory Species of Wild Animals, the International Whaling Commission, and the United Nations Convention on the Law of the Sea.


Assuntos
Conservação dos Recursos Naturais , Biologia Marinha , Comportamento Cooperativo , Meio Ambiente , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA