Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2216908120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253002

RESUMO

Succinate produced by the commensal protist Tritrichomonas musculis (T. mu) stimulates chemosensory tuft cells, resulting in intestinal type 2 immunity. Tuft cells express the succinate receptor SUCNR1, yet this receptor does not mediate antihelminth immunity nor alter protist colonization. Here, we report that microbial-derived succinate increases Paneth cell numbers and profoundly alters the antimicrobial peptide (AMP) landscape in the small intestine. Succinate was sufficient to drive this epithelial remodeling, but not in mice lacking tuft cell chemosensory components required to detect this metabolite. Tuft cells respond to succinate by stimulating type 2 immunity, leading to interleukin-13-mediated epithelial and AMP expression changes. Moreover, type 2 immunity decreases the total number of mucosa-associated bacteria and alters the small intestinal microbiota composition. Finally, tuft cells can detect short-term bacterial dysbiosis that leads to a spike in luminal succinate levels and modulate AMP production in response. These findings demonstrate that a single metabolite produced by commensals can markedly shift the intestinal AMP profile and suggest that tuft cells utilize SUCNR1 and succinate sensing to modulate bacterial homeostasis.


Assuntos
Anti-Infecciosos , Mucosa Intestinal , Camundongos , Animais , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Intestinos , Ácido Succínico/metabolismo , Anti-Infecciosos/metabolismo
2.
Infect Immun ; 92(5): e0000624, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38629806

RESUMO

Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.


Assuntos
Receptor 1 de Quimiocina CX3C , Colo , Enterococcus faecalis , Macrófagos , Receptores CCR2 , Receptores de Quimiocinas , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Macrófagos/microbiologia , Macrófagos/imunologia , Camundongos , Colo/microbiologia , Colo/imunologia , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores de Quimiocinas/metabolismo , Receptores de Quimiocinas/genética , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos Endogâmicos C57BL , Linfonodos/microbiologia , Linfonodos/imunologia , Receptores CCR7/metabolismo , Receptores CCR7/genética
3.
J Pediatr Gastroenterol Nutr ; 78(4): 886-897, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38390691

RESUMO

OBJECTIVE: Pediatric nonalcoholic fatty liver disease (NAFLD) is a growing problem, but its underlying mechanisms are poorly understood. We used transcriptomic reporter cell assays to investigate differences in transcriptional signatures induced in hepatocyte reporter cells by the sera of children with and without NAFLD. METHODS: We studied serum samples from 45 children with NAFLD and 28 children without NAFLD. The sera were used to induce gene expression in cultured HepaRG cells and RNA-sequencing was used to determine gene expression. Computational techniques were used to compare gene expression patterns. RESULTS: Sera from children with NAFLD induced the expression of 195 genes that were significantly differentially expressed in hepatocytes compared to controls with obesity. NAFLD was associated with increased expression of genes promoting inflammation, collagen synthesis, and extracellular matrix remodeling. Additionally, there was lower expression of genes involved in endobiotic and xenobiotic metabolism, and downregulation of peroxisome function, oxidative phosphorylation, and xenobiotic, bile acid, and fatty acid metabolism. A 13-gene signature, including upregulation of TREM1 and MMP1 and downregulation of CYP2C9, was consistently associated with all diagnostic categories of pediatric NAFLD. CONCLUSION: The extracellular milieu of sera from children with NAFLD induced specific gene profiles distinguishable by a hepatocyte reporter system. Circulating factors may contribute to inflammation and extracellular matrix remodeling and impair xenobiotic and endobiotic metabolism in pediatric NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Criança , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Xenobióticos/metabolismo , Hepatócitos , Inflamação/metabolismo , Células Cultivadas , Fígado/metabolismo
4.
Nat Immunol ; 11(1): 76-83, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19855381

RESUMO

Antimicrobial peptides are important effectors of innate immunity throughout the plant and animal kingdoms. In the mammalian small intestine, Paneth cell alpha-defensins are antimicrobial peptides that contribute to host defense against enteric pathogens. To determine if alpha-defensins also govern intestinal microbial ecology, we analyzed the intestinal microbiota of mice expressing a human alpha-defensin gene (DEFA5) and in mice lacking an enzyme required for the processing of mouse alpha-defensins. In these complementary models, we detected significant alpha-defensin-dependent changes in microbiota composition, but not in total bacterial numbers. Furthermore, DEFA5-expressing mice had striking losses of segmented filamentous bacteria and fewer interleukin 17 (IL-17)-producing lamina propria T cells. Our data ascribe a new homeostatic role to alpha-defensins in regulating the makeup of the commensal microbiota.


Assuntos
Ecologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , alfa-Defensinas/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Feminino , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Interleucina-17/imunologia , Interleucina-17/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestinos/imunologia , Masculino , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Metagenoma , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Filogenia , RNA Ribossômico 16S/genética , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , alfa-Defensinas/genética , alfa-Defensinas/imunologia
5.
Nature ; 526(7575): 719-22, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26479034

RESUMO

Enterococcus faecalis is both a common commensal of the human gastrointestinal tract and a leading cause of hospital-acquired infections. Systemic infections with multidrug-resistant enterococci occur subsequent to gastrointestinal colonization. Preventing colonization by multidrug-resistant E. faecalis could therefore be a valuable approach towards limiting infection. However, little is known about the mechanisms E. faecalis uses to colonize and compete for stable gastrointestinal niches. Pheromone-responsive conjugative plasmids encoding bacteriocins are common among enterococcal strains and could modulate niche competition among enterococci or between enterococci and the intestinal microbiota. We developed a model of colonization of the mouse gut with E. faecalis, without disrupting the microbiota, to evaluate the role of the conjugative plasmid pPD1 expressing bacteriocin 21 (ref. 4) in enterococcal colonization. Here we show that E. faecalis harbouring pPD1 replaces indigenous enterococci and outcompetes E. faecalis lacking pPD1. Furthermore, in the intestine, pPD1 is transferred to other E. faecalis strains by conjugation, enhancing their survival. Colonization with an E. faecalis strain carrying a conjugation-defective pPD1 mutant subsequently resulted in clearance of vancomycin-resistant enterococci, without plasmid transfer. Therefore, bacteriocin expression by commensal bacteria can influence niche competition in the gastrointestinal tract, and bacteriocins, delivered by commensals that occupy a precise intestinal bacterial niche, may be an effective therapeutic approach to specifically eliminate intestinal colonization by multidrug-resistant bacteria, without profound disruption of the indigenous microbiota.


Assuntos
Bacteriocinas/biossíntese , Enterococcus faecalis/fisiologia , Trato Gastrointestinal/microbiologia , Microbiota/fisiologia , Animais , Bacteriocinas/genética , Conjugação Genética/genética , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/terapia , Masculino , Camundongos , Viabilidade Microbiana/genética , Microbiota/genética , Dados de Sequência Molecular , Mutação/genética , Plasmídeos/genética , Simbiose , Resistência a Vancomicina
6.
Gastroenterology ; 157(4): 1109-1122, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31255652

RESUMO

BACKGROUND & AIMS: The intestinal microbiome might affect the development and severity of nonalcoholic fatty liver disease (NAFLD). We analyzed microbiomes of children with and without NAFLD. METHODS: We performed a prospective, observational, cross-sectional study of 87 children (age range, 8-17 years) with biopsy-proven NAFLD and 37 children with obesity without NAFLD (controls). Fecal samples were collected and microbiome composition and functions were assessed using 16S ribosomal RNA amplicon sequencing and metagenomic shotgun sequencing. Microbial taxa were identified using zero-inflated negative binomial modeling. Genes contributing to bacterial pathways were identified using gene set enrichment analysis. RESULTS: Fecal microbiomes of children with NAFLD had lower α-diversity than those of control children (3.32 vs 3.52, P = .016). Fecal microbiomes from children with nonalcoholic steatohepatitis (NASH) had the lowest α-diversity (control, 3.52; NAFLD, 3.36; borderline NASH, 3.37; NASH, 2.97; P = .001). High abundance of Prevotella copri was associated with more severe fibrosis (P = .036). Genes for lipopolysaccharide biosynthesis were enriched in microbiomes from children with NASH (P < .001). Classification and regression tree model with level of alanine aminotransferase and relative abundance of the lipopolysaccharide pathway gene encoding 3-deoxy-d-manno-octulosonate 8-phosphate-phosphatase identified patients with NASH with an area under the receiver operating characteristic curve value of 0.92. Genes involved in flagellar assembly were enriched in the fecal microbiomes of patients with moderate to severe fibrosis (P < .001). Classification and regression tree models based on level of alanine aminotransferase and abundance of genes encoding flagellar biosynthesis protein had good accuracy for identifying case children with moderate to severe fibrosis (area under the receiver operating characteristic curve, 0.87). CONCLUSIONS: In an analysis of fecal microbiomes of children with NAFLD, we associated NAFLD and NASH with intestinal dysbiosis. NAFLD and its severity were associated with greater abundance of genes encoding inflammatory bacterial products. Alterations to the intestinal microbiome might contribute to the pathogenesis of NAFLD and be used as markers of disease or severity.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Microbioma Gastrointestinal , Intestinos/microbiologia , Cirrose Hepática/microbiologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , RNA Ribossômico 16S/genética , Adolescente , Bactérias/classificação , Bactérias/patogenicidade , Estudos de Casos e Controles , Criança , Estudos Transversais , Disbiose , Fezes/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Masculino , Metagenoma , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Estudos Prospectivos , Ribotipagem , Índice de Gravidade de Doença
7.
Hepatology ; 70(5): 1690-1703, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31038755

RESUMO

Hepatic encephalopathy (HE) can cause major morbidity despite standard of care (SOC; rifaximin/lactulose). Fecal microbial transplant (FMT) enemas postantibiotics are safe, but the effect of FMT without antibiotics using the capsular route requires investigation. The aim of this work was to determine the safety, tolerability, and impact on mucosal/stool microbiota and brain function in HE after capsular FMT in a randomized, single-blind, placebo-controlled clinical trial in Virginia. Patients with cirrhosis with recurrent HE with MELD (Model for End-Stage Liver Disease) <17 on SOC were randomized 1:1 into receiving 15 FMT capsules versus placebo from a single donor enriched in Lachnospiraceae and Ruminococcaceae. Endoscopies with duodenal and sigmoid biopsies, stool analysis, cognition, serum lipopolysaccharide-binding protein (LBP), and duodenal antimicrobial peptide (AMP) expression at baseline were used. Clinical follow-up with SOC maintenance was performed until 5 months. FMT-assigned patients underwent repeat endoscopies 4 weeks postenrollment. Twenty subjects on lactulose/rifaximin were randomized 1:1. MELD score was similar at baseline (9.6 vs. 10.2) and study end (10.2 vs. 10.5). Six patients in the placebo group required hospitalizations compared to 1 in FMT, which was deemed unrelated to FMT. Infection/HE episodes were similar between groups. Baseline microbial diversity was similar in all tissues between groups. Post-FMT, duodenal mucosal diversity (P = 0.01) increased with higher Ruminococcaceae and Bifidobacteriaceae and lower Streptococcaceae and Veillonellaceae. Reduction in Veillonellaceae were noted post-FMT in sigmoid (P = 0.04) and stool (P = 0.05). Duodenal E-cadherin (P = 0.03) and defensin alpha 5 (P = 0.03) increased whereas interleukin-6 (P = 0.02) and serum LBP (P = 0.009) reduced post-FMT. EncephalApp performance improved post-FMT only (P = 0.02). Conclusion: In this phase 1 study, oral FMT capsules are safe and well tolerated in patients with cirrhosis and recurrent HE. FMT was associated with improved duodenal mucosal diversity, dysbiosis, and AMP expression, reduced LBP, and improved EncephalApp performance. Further studies are needed to prove efficacy.


Assuntos
Transplante de Microbiota Fecal , Encefalopatia Hepática/terapia , Administração Oral , Cápsulas , Transplante de Microbiota Fecal/métodos , Feminino , Encefalopatia Hepática/complicações , Humanos , Cirrose Hepática/complicações , Masculino , Pessoa de Meia-Idade , Método Simples-Cego
8.
Immunity ; 35(1): 109-22, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21723159

RESUMO

Although both natural and induced regulatory T (nTreg and iTreg) cells can enforce tolerance, the mechanisms underlying their synergistic actions have not been established. We examined the functions of nTreg and iTreg cells by adoptive transfer immunotherapy of newborn Foxp3-deficient mice. As monotherapy, only nTreg cells prevented disease lethality, but did not suppress chronic inflammation and autoimmunity. Provision of Foxp3-sufficient conventional T cells with nTreg cells reconstituted the iTreg pool and established tolerance. In turn, acute depletion of iTreg cells in rescued mice resulted in weight loss and inflammation. Whereas the transcriptional signatures of nTreg and in vivo-derived iTreg cells were closely matched, there was minimal overlap in their T cell receptor (TCR) repertoires. Thus, iTreg cells are an essential nonredundant regulatory subset that supplements nTreg cells, in part by expanding TCR diversity within regulatory responses.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Transferência Adotiva , Animais , Animais Recém-Nascidos , Autoimunidade/genética , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Tolerância Imunológica , Inflamação , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Mutação/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
9.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804098

RESUMO

The human gastrointestinal tract (GIT) is inhabited by a dense microbial community of symbionts. Enterococci are among the earliest members of this community and remain core members of the GIT microbiota throughout life. Enterococci have also recently emerged as opportunistic pathogens and major causes of nosocomial infections. Although recognized as a prerequisite for infection, colonization of the GIT by enterococci remains poorly understood. One way that bacteria adapt to dynamic ecosystems like the GIT is through the use of their surface proteins to sense and interact with components of their immediate environment. In Gram-positive bacteria, a subset of surface proteins relies on an enzyme called sortase for covalent attachment to the cell wall. Here, we show that the housekeeping sortase A (SrtA) enzyme promotes intestinal colonization by enterococci. Furthermore, we show that the enzymatic activity of SrtA is key to the ability of Enterococcus faecalis to bind mucin (a major component of the GIT mucus). We also report the GIT colonization phenotypes of E. faecalis mutants lacking selected sortase-dependent proteins (SDPs). Further examination of the mucin binding ability of these mutants suggests that adhesion to mucin contributes to intestinal colonization by E. faecalis.


Assuntos
Aminoaciltransferases/fisiologia , Proteínas de Bactérias/fisiologia , Parede Celular/efeitos dos fármacos , Cisteína Endopeptidases/fisiologia , Enterococcus/fisiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Animais , Modelos Animais de Doenças , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Pediatr Res ; 86(1): 107-114, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30965357

RESUMO

BACKGROUND: Animal studies suggest that total parenteral nutrition (TPN) may alter bacterial colonization of the intestinal tract and contribute to complications. Progressive changes in gut microbiome of infants receiving TPN are not well understood. METHODS: Infants with and without TPN/soy lipid were enrolled in a prospective, longitudinal study. Weekly fecal samples were obtained for the first 4 weeks of life. High throughput pyrosequencing of 16S rDNA was used for compositional analysis of the gut microbiome. RESULTS: 47 infants were eligible for analyses, 25 infants received TPN, and 22 infants did not (control). Although similar between TPN and control groups in the first week, fecal bacterial alpha diversity was significantly lower in the TPN group compared to controls at week 4 (Shannon index 1.0 vs 1.5, P-value = 0.03). The TPN group had significantly lower Bacteroidetes and higher Verrucomicrobia abundance compared to controls (P-values < 0.05), and these differences became more pronounced over time. At the genus level, TPN was associated with lower abundance of Bacteroides and Bifidobacterium in all weeks. CONCLUSIONS: TPN is associated with significant loss of biodiversity and alterations in the pattern of gut microbial colonization of infants over time. TPN-associated dysbiosis may predispose infants to adverse NICU outcomes.


Assuntos
Microbioma Gastrointestinal , Nutrição Parenteral Total/efeitos adversos , Bacteroides , Bifidobacterium , DNA Ribossômico/análise , Disbiose , Feminino , Idade Gestacional , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Recém-Nascido Prematuro , Terapia Intensiva Neonatal , Modelos Lineares , Lipídeos/química , Estudos Longitudinais , Masculino , Estudos Prospectivos , Análise de Sequência de DNA , Alimentos de Soja , Verrucomicrobia
11.
Infect Immun ; 86(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30224553

RESUMO

Enterococci are Gram-positive commensals of the mammalian intestinal tract and harbor intrinsic resistance to broad-spectrum cephalosporins. Disruption of colonization resistance in humans by antibiotics allows enterococci to proliferate in the gut and cause disseminated infections. In this study, we used Enterococcus faecalis (EF)-colonized mice to study the dynamics of enterococci, commensal microbiota, and the host in response to systemic ceftriaxone administration. We found that the mouse model recapitulates intestinal proliferation and dissemination of enterococci seen in humans. Employing a ceftriaxone-sensitive strain of enterococci (E. faecalis JL308), we showed that increased intestinal abundance is critical for the systemic dissemination of enterococci. Investigation of the impact of ceftriaxone on the mucosal barrier defenses and integrity suggested that translocation of enterococci across the intestinal mucosa was not associated with intestinal pathology or increased permeability. Ceftriaxone-induced alteration of intestinal microbial composition was associated with transient increase in the abundance of multiple bacterial operational taxonomic units (OTUs) in addition to enterococci, for example, lactobacilli, which also disseminated to the extraintestinal organs. Collectively, these results emphasize that ceftriaxone-induced disruption of colonization resistance and alteration of mucosal homeostasis facilitate increased intestinal abundance of a limited number of commensals along with enterococci, allowing their translocation and systemic dissemination in a healthy host.


Assuntos
Antibacterianos/efeitos adversos , Ceftriaxona/efeitos adversos , Homeostase/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Animais , Translocação Bacteriana , Enterococcus faecalis , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Positivas , Intestinos/microbiologia , Intestinos/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038125

RESUMO

The Gram-positive bacterium Enterococcus faecalis is both a colonizer of the gastrointestinal tract (GIT) and an agent of serious nosocomial infections. Although it is typically required for pathogenesis, GIT colonization by E. faecalis is poorly understood. E. faecalis tolerates high concentrations of GIT antimicrobials, like cholate and lysozyme, leading us to hypothesize that resistance to intestinal antimicrobials is essential for long-term GIT colonization. Analyses of E. faecalis mutants exhibiting defects in antimicrobial resistance revealed that IreK, a determinant of envelope integrity and antimicrobial resistance, is required for long-term GIT colonization. IreK is a member of the PASTA kinase protein family, bacterial transmembrane signaling proteins implicated in the regulation of cell wall homeostasis. Among several determinants of cholate and lysozyme resistance in E. faecalis, IreK was the only one found to be required for intestinal colonization, emphasizing the importance of this protein to enterococcal adaptation to the GIT. By studying ΔireK suppressor mutants that recovered the ability to colonize the GIT, we identified two conserved enterococcal proteins (OG1RF_11271 and OG1RF_11272) that function antagonistically to IreK and interfere with cell envelope integrity, antimicrobial resistance, and GIT colonization. Our data suggest that IreK, through its kinase activity, inhibits the actions of these proteins. IreK, OG1RF_11271, and OG1RF_11272 are found in all enterococci, suggesting that their effect on GIT colonization is universal across enterococci. Thus, we have defined conserved genes in the enterococcal core genome that influence GIT colonization through their effect on enterococcal envelope integrity and antimicrobial resistance.


Assuntos
Parede Celular/genética , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Trato Gastrointestinal/microbiologia , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Sequência Conservada/genética , Enterococcus faecalis/efeitos dos fármacos , Genoma Bacteriano/genética , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Masculino , Mamíferos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana/métodos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
13.
J Immunol ; 196(8): 3305-17, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26927797

RESUMO

Induced regulatory T (iTreg) and Th17 cells promote mucosal homeostasis. We used a T cell transfer model of colitis to compare the capacity of iTreg and Th17 cells to develop in situ following the transfer of naive CD4(+)CD45RB(hi)T cells intoRag1(-/-)C57BL/6 or BALB/c mice, the prototypical Th1/M1- and Th2/M2-prone strains. We found that the frequency and number of Foxp3(+)iTreg cells and Th17 cells were significantly reduced in C57BL/6 mice compared with the BALB/c strain. C57BL/6 mice with colitis were also resistant to natural Treg cell immunotherapy. Pretreatment of C57BL/6Rag1(-/-)mice with IL-4 plus IL-13, or with M2a but not M1 macrophages, dramatically increased the generation of iTreg and Th17 cells. Importantly, M2a transfers, either as a pretreatment or in mice with established colitis, allowed successful immunotherapy with natural Treg cells. M2a macrophages also reduced the generation of pathogenic iTreg cells that lost Foxp3 expression, suggesting that they stabilize the expression of Foxp3. Thus, polarized M2a macrophages drive a directionally concordant expansion of the iTreg-Th17 cell axis and can be exploited as a therapeutic adjuvant in cell-transfer immunotherapy to re-establish mucosal tolerance.


Assuntos
Colite/terapia , Imunoterapia Adotiva/métodos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Colite/imunologia , Fatores de Transcrição Forkhead/metabolismo , Tolerância Imunológica/imunologia , Interleucina-13/uso terapêutico , Interleucina-4/uso terapêutico , Macrófagos/transplante , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/transplante
14.
J Immunol ; 195(7): 3071-85, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324769

RESUMO

It is clear that IL-10 plays an essential role in maintaining homeostasis in the gut in response to the microbiome. However, it is unknown whether IL-10 also facilitates immune homeostasis at distal sites. To address this question, we asked whether splenic immune populations were altered in IL-10-deficient (Il10(-/-)) mice in which differences in animal husbandry history were associated with susceptibility to spontaneous enterocolitis that is microbiome dependent. The susceptible mice exhibited a significant increase in splenic macrophages, neutrophils, and marginal zone (MZ) B cells that was inhibited by IL-10 signaling in myeloid, but not B cells. The increase in macrophages was due to increased proliferation that correlated with a subsequent enhancement in MZ B cell differentiation. Cohousing and antibiotic treatment studies suggested that the alteration in immune homeostasis in the spleen was microbiome dependent. The 16S rRNA sequencing revealed that susceptible mice harbored a different microbiome with a significant increase in the abundance of the bacterial genus Helicobacter. The introduction of Helicobacter hepaticus to the gut of nonsusceptible mice was sufficient to drive macrophage expansion and MZ B cell development. Given that myeloid cells and MZ B cells are part of the first line of defense against blood-borne pathogens, their increase following a breach in the gut epithelial barrier would be protective. Thus, IL-10 is an essential gatekeeper that maintains immune homeostasis at distal sites that can become functionally imbalanced upon the introduction of specific pathogenic bacteria to the intestinal track.


Assuntos
Linfócitos B/imunologia , Disbiose/microbiologia , Microbioma Gastrointestinal/genética , Infecções por Helicobacter/imunologia , Helicobacter hepaticus/imunologia , Interleucina-10/genética , Animais , Linfócitos B/citologia , Sequência de Bases , Contagem de Células , Diferenciação Celular/imunologia , Proliferação de Células , DNA Bacteriano/genética , Enterocolite/imunologia , Enterocolite/microbiologia , Infecções por Helicobacter/microbiologia , Interleucina-10/imunologia , Ativação Linfocitária/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Transdução de Sinais/imunologia
15.
Semin Immunol ; 25(5): 334-41, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24239045

RESUMO

The complex community of colonizing microbes inhabiting the mucosal surfaces of mammals is vital to homeostasis and normal physiology in the host. When the composition of this microbiota is unfavorably altered, termed dysbiosis, the host is rendered more susceptible to a variety of chronic diseases. In the mammalian small intestine, specialized secretory epithelial cells, named Paneth cells, produce a variety of secreted antimicrobial peptides that fundamentally influence the composition of the microbiota. Recent investigations have identified numerous genetic and environmental factors that can disrupt normal Paneth cell function, resulting in compromised antimicrobial peptide secretion and consequent dysbiosis. These findings suggest that Paneth cell dysfunction should be considered a common cause of dysbiosis.


Assuntos
Disbiose/patologia , Celulas de Paneth/fisiologia , Animais , Disbiose/microbiologia , Humanos , Microbiota , Celulas de Paneth/microbiologia , Celulas de Paneth/patologia
16.
Bioinformatics ; 31(10): 1607-13, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25568281

RESUMO

MOTIVATION: Establishment of a statistical association between microbiome features and clinical outcomes is of growing interest because of the potential for yielding insights into biological mechanisms and pathogenesis. Extracting microbiome features that are relevant for a disease is challenging and existing variable selection methods are limited due to large number of risk factor variables from microbiome sequence data and their complex biological structure. RESULTS: We propose a tree-based scanning method, Selection of Models for the Analysis of Risk factor Trees (referred to as SMART-scan), for identifying taxonomic groups that are associated with a disease or trait. SMART-scan is a model selection technique that uses a predefined taxonomy to organize the large pool of possible predictors into optimized groups, and hierarchically searches and determines variable groups for association test. We investigate the statistical properties of SMART-scan through simulations, in comparison to a regular single-variable analysis and three commonly-used variable selection methods, stepwise regression, least absolute shrinkage and selection operator (LASSO) and classification and regression tree (CART). When there are taxonomic group effects in the data, SMART-scan can significantly increase power by using bacterial taxonomic information to split large numbers of variables into groups. Through an application to microbiome data from a vervet monkey diet experiment, we demonstrate that SMART-scan can identify important phenotype-associated taxonomic features missed by single-variable analysis, stepwise regression, LASSO and CART.


Assuntos
Chlorocebus aethiops/microbiologia , Árvores de Decisões , Trato Gastrointestinal/microbiologia , Microbiota , Modelos Estatísticos , Animais , Chlorocebus aethiops/genética , Humanos , Modelos Logísticos , Fenótipo , RNA Ribossômico/genética , Medição de Risco/métodos , Fatores de Risco
17.
J Immunol ; 190(11): 5676-88, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23636052

RESUMO

Variants of the multidrug resistance gene (MDR1/ABCB1) have been associated with increased susceptibility to severe ulcerative colitis (UC). In this study, we investigated the role of TLR/IL-1R signaling pathways including the common adaptor MyD88 in the pathogenesis of chronic colonic inflammation in MDR1A deficiency. Double- or triple-null mice lacking TLR2, MD-2, MyD88, and MDR1A were generated in the FVB/N background. Deletion of TLR2 in MDR1A deficiency resulted in fulminant pancolitis with early expansion of CD11b(+) myeloid cells and rapid shift toward TH1-dominant immune responses in the lamina propria. Colitis exacerbation in TLR2/MDR1A double-knockout mice required the unaltered commensal microbiota and the LPS coreceptor MD-2. Blockade of IL-1ß activity by treatment with IL-1R antagonist (IL-1Ra; Anakinra) inhibited colitis acceleration in TLR2/MDR1A double deficiency; intestinal CD11b(+)Ly6C(+)-derived IL-1ß production and inflammation entirely depended on MyD88. TLR2/MDR1A double-knockout CD11b(+) myeloid cells expressed MD-2/TLR4 and hyperresponded to nonpathogenic Escherichia coli or LPS with reactive oxygen species production and caspase-1 activation, leading to excessive cell death and release of proinflammatory IL-1ß, consistent with pyroptosis. Inhibition of reactive oxygen species-mediated lysosome degradation suppressed LPS hyperresponsiveness. Finally, active UC in patients carrying the TLR2-R753Q and MDR1-C3435T polymorphisms was associated with increased nuclear expression of caspase-1 protein and cell death in areas of acute inflammation, compared with active UC patients without these variants. In conclusion, we show that the combined defect of two UC susceptibility genes, MDR1A and TLR2, sets the stage for spontaneous and uncontrolled colitis progression through MD-2 and IL-1R signaling via MyD88, and we identify commensally induced pyroptosis as a potential innate immune effector in severe UC pathogenesis.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Receptor 2 Toll-Like/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Antígeno CD11b , Caspase 1/metabolismo , Morte Celular/genética , Morte Celular/imunologia , Colo/imunologia , Colo/metabolismo , Colo/patologia , Progressão da Doença , Deleção de Genes , Humanos , Interleucina-1beta/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Antígeno 96 de Linfócito/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/deficiência
18.
J Immunol ; 191(11): 5460-76, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24163409

RESUMO

To study regulatory T (Treg) cell control of chronic autoimmunity in a lymphoreplete host, we created and characterized a new model of autoimmune lung inflammation that targets the medium and small airways. We generated transgenic mice that express a chimeric membrane protein consisting of hen egg lysozyme and a hemoglobin epitope tag under the control of the Clara cell secretory protein promoter, which largely limited transgene expression to the respiratory bronchioles. When Clara cell secretory protein-membrane hen egg lysozyme/hemoglobin transgenic mice were crossed to N3.L2 TCR transgenic mice that recognize the hemoglobin epitope, the bigenic progeny developed dense, pseudo-follicular lymphocytic peribronchiolar infiltrates that resembled the histological pattern of follicular bronchiolitis. Aggregates of activated IFN-γ- and IL-17A-secreting CD4(+) T cells as well as B cells surrounded the airways. Lung pathology was similar in Ifng(-/-) and Il17a(-/-) mice, indicating that either cytokine is sufficient to establish chronic disease. A large number of Ag-specific Treg cells accumulated in the lesions, and Treg cell depletion in the affected mice led to an interstitial spread of the disease that ultimately proved fatal. Thus, Treg cells act to restrain autoimmune responses, resulting in an organized and controlled chronic pathological process rather than a progressive disease.


Assuntos
Linfócitos B/imunologia , Bronquíolos/metabolismo , Bronquiolite/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Movimento Celular , Células Cultivadas , Doença Crônica , Progressão da Doença , Hemoglobinas/genética , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Muramidase/genética , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas/genética , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Uteroglobina/genética
19.
J Immunol ; 188(7): 3188-98, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22368274

RESUMO

B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (µMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into µMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Linfócitos T Reguladores/imunologia , Fatores de Necrose Tumoral/fisiologia , Transferência Adotiva , Animais , Anticorpos Monoclonais Murinos/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/transplante , Antígenos B7/imunologia , Técnicas de Cocultura , Homeostase , Interleucina-10/fisiologia , Contagem de Linfócitos , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rituximab , Baço/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
20.
J Immunol ; 189(12): 5638-48, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23125413

RESUMO

"Natural" regulatory T cells (nTregs) that express the transcription factor Foxp3 and produce IL-10 are required for systemic immunological tolerance. "Induced" regulatory T cells (iTregs) are nonredundant and essential for tolerance at mucosal surfaces, yet their mechanisms of suppression and stability are unknown. We investigated the role of iTreg-produced IL-10 and iTreg fate in a treatment model of inflammatory bowel disease. Colitis was induced in Rag1(-/-) mice by the adoptive transfer of naive CD4(+) T cells carrying a nonfunctional Foxp3 allele. At the onset of weight loss, mice were treated with both iTregs and nTregs where one marked subset was selectively IL-10 deficient. Body weight assessment, histological scoring, cytokine analysis, and flow cytometry were used to monitor disease activity. Transcriptional profiling and TCR repertoire analysis were used to track cell fate. When nTregs were present but IL-10 deficient, iTreg-produced IL-10 was necessary and sufficient for the treatment of disease, and vice versa. Invariably, ∼85% of the transferred iTregs lost Foxp3 expression (ex-iTregs) but retained a portion of the iTreg transcriptome, which failed to limit their pathogenic potential upon retransfer. TCR repertoire analysis revealed no clonal relationships between iTregs and ex-iTregs, either within mice or between mice treated with the same cells. These data identify a dynamic IL-10-dependent functional reciprocity between regulatory T cell subsets that maintains mucosal tolerance. The niche supporting stable iTregs is limited and readily saturated, which promotes a large population of ex-iTregs with pathogenic potential during immunotherapy.


Assuntos
Colite/imunologia , Colite/terapia , Interleucina-10/biossíntese , Interleucina-10/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Colite/genética , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Tolerância Imunológica/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/terapia , Interleucina-10/deficiência , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Mutagênese Insercional , Proteínas Recombinantes de Fusão/deficiência , Proteínas Recombinantes de Fusão/genética , Linfócitos T Reguladores/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA