Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686352

RESUMO

The self-assembly of conducting nanostructures is currently being investigated intensively in order to evaluate the feasibility of creating novel nanoelectronic devices and circuits using such pathways. In particular, methods based on so-called DNA Origami nanostructures have shown great potential in the formation of metallic nanowires. The main challenge of this method is the reproducible generation of very well-connected metallic nanostructures, which may be used as interconnects in future devices. Here, we use a novel design of nanowires with a quasi-circular cross-section as opposed to rectangular or uncontrolled cross-sections in earlier studies. We find indications that the reliability of the fabrication scheme is enhanced and the overall resistance of the wires is comparable to metallic nanostructures generated by electrochemistry or top-down methods. In addition, we observe that some of the nanowires are annealed when passing a current through them, which leads to a clear enhancement for the conductance. We envision that these nanowires provide further steps towards the successful generation of nanoelectronics using self-assembly.


Assuntos
Nanoestruturas , Nanofios , Reprodutibilidade dos Testes , DNA , Eletroquímica
2.
Sci Rep ; 11(1): 1922, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479352

RESUMO

We introduce a method based on directed molecular self-assembly to manufacture and electrically characterise C-shape gold nanowires which clearly deviate from typical linear shape due to the design of the template guiding the assembly. To this end, gold nanoparticles are arranged in the desired shape on a DNA-origami template and enhanced to form a continuous wire through electroless deposition. C-shape nanowires with a size below 150nm on a [Formula: see text] substrate are contacted with gold electrodes by means of electron beam lithography. Charge transport measurements of the nanowires show hopping, thermionic and tunneling transports at different temperatures in the 4.2K to 293K range. The different transport mechanisms indicate that the C-shape nanowires consist of metallic segments which are weakly coupled along the wires.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Nanofios/química , Condutividade Elétrica , Ouro/química , Nanotubos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA