Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 164(5): 999-1014, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26875865

RESUMO

Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation.


Assuntos
Fator de Transcrição GATA4/metabolismo , Proteínas de Homeodomínio/metabolismo , Miocárdio/citologia , Organogênese , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Cristalografia por Raios X , Embrião de Mamíferos/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Miocárdio/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas com Domínio T/genética , Fatores de Transcrição/genética
2.
Hum Mol Genet ; 32(6): 959-970, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36229919

RESUMO

Haploinsufficiency of TGF-beta-activated kinase 1 (MAP3K7) binding protein 2 (TAB2) has been associated with congenital heart disease and more recently multiorgan structural abnormalities. Missense variant represents a major proportion of non-synonymous TAB2 variants reported in gnomAD (295/576) and Clinvar (16/73), most of which are variants of uncertain significance (VUSs). However, interpretation of TAB2 missense variants remains challenging because of lack of functional assays. To address this issue, we established a cell-based luciferase assay that enables high-throughput screening of TAB2 variants to assess the functional consequence for predicting variant pathogenicity. Using this platform, we screened 47 TAB2 variants including five pathogenic controls and one benign control, and the results showed that the transcriptional activity of activator protein 1 (AP-1) but not nuclear factor kappa B predicts the TAB2 variant pathogenicity. This assay provides accurate functional readout for both loss-of-function (LOF) and gain-of-function variants, which are associated with distinct phenotypes. In all, 22 out of 32 tested VUSs were reclassified. Genotype-Phenotype association showed that most patients with partial LOF variants do not exhibit congenital heart disease but high frequency of developmental delay, hypotonia and dysmorphic features, which suggests that genetic testing for TAB2 is needed for a broader spectrum of patients with more diverse phenotypes. Molecular modeling with Npl4 zinc finger (NZF) domain variants revealed that the stability of the NZF domain in TAB2 protein is crucial for AP-1 activation. In conclusion, we developed a highly effective functional assay for TAB2 variant prediction and interpretation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cardiopatias Congênitas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Virulência , NF-kappa B/metabolismo , Cardiopatias Congênitas/genética
3.
Nucleic Acids Res ; 51(14): 7184-7197, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395403

RESUMO

Single nucleotide mutation rates have critical implications for human evolution and genetic diseases. Importantly, the rates vary substantially across the genome and the principles underlying such variations remain poorly understood. A recent model explained much of this variation by considering higher-order nucleotide interactions in the 7-mer sequence context around mutated nucleotides. This model's success implicates a connection between DNA shape and mutation rates. DNA shape, i.e. structural properties like helical twist and tilt, is known to capture interactions between nucleotides within a local context. Thus, we hypothesized that changes in DNA shape features at and around mutated positions can explain mutation rate variations in the human genome. Indeed, DNA shape-based models of mutation rates showed similar or improved performance over current nucleotide sequence-based models. These models accurately characterized mutation hotspots in the human genome and revealed the shape features whose interactions underlie mutation rate variations. DNA shape also impacts mutation rates within putative functional regions like transcription factor binding sites where we find a strong association between DNA shape and position-specific mutation rates. This work demonstrates the structural underpinnings of nucleotide mutations in the human genome and lays the groundwork for future models of genetic variations to incorporate DNA shape.


Assuntos
Genoma Humano , Taxa de Mutação , Humanos , Mutação , DNA/genética , Nucleotídeos/genética
4.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285319

RESUMO

MOTIVATION: Spatial transcriptomics (ST) can reveal the existence and extent of spatial variation of gene expression in complex tissues. Such analyses could help identify spatially localized processes underlying a tissue's function. Existing tools to detect spatially variable genes assume a constant noise variance across spatial locations. This assumption might miss important biological signals when the variance can change across locations. RESULTS: In this article, we propose NoVaTeST, a framework to identify genes with location-dependent noise variance in ST data. NoVaTeST models gene expression as a function of spatial location and allows the noise to vary spatially. NoVaTeST then statistically compares this model to one with constant noise and detects genes showing significant spatial noise variation. We refer to these genes as "noisy genes." In tumor samples, the noisy genes detected by NoVaTeST are largely independent of the spatially variable genes detected by existing tools that assume constant noise, and provide important biological insights into tumor microenvironments. AVAILABILITY AND IMPLEMENTATION: An implementation of the NoVaTeST framework in Python along with instructions for running the pipeline is available at https://github.com/abidabrar-bracu/NoVaTeST.


Assuntos
Software , Transcriptoma , Perfilação da Expressão Gênica
5.
Bioinformatics ; 39(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756699

RESUMO

MOTIVATION: Spatial domain identification is a very important problem in the field of spatial transcriptomics. The state-of-the-art solutions to this problem focus on unsupervised methods, as there is lack of data for a supervised learning formulation. The results obtained from these methods highlight significant opportunities for improvement. RESULTS: In this article, we propose a potential avenue for enhancement through the development of a semi-supervised convolutional neural network based approach. Named "ScribbleDom", our method leverages human expert's input as a form of semi-supervision, thereby seamlessly combines the cognitive abilities of human experts with the computational power of machines. ScribbleDom incorporates a loss function that integrates two crucial components: similarity in gene expression profiles and adherence to the valuable input of a human annotator through scribbles on histology images, providing prior knowledge about spot labels. The spatial continuity of the tissue domains is taken into account by extracting information on the spot microenvironment through convolution filters of varying sizes, in the form of "Inception" blocks. By leveraging this semi-supervised approach, ScribbleDom significantly improves the quality of spatial domains, yielding superior results both quantitatively and qualitatively. Our experiments on several benchmark datasets demonstrate the clear edge of ScribbleDom over state-of-the-art methods-between 1.82% to 169.38% improvements in adjusted Rand index for 9 of the 12 human dorsolateral prefrontal cortex samples, and 15.54% improvement in the melanoma cancer dataset. Notably, when the expert input is absent, ScribbleDom can still operate, in a fully unsupervised manner like the state-of-the-art methods, and produces results that remain competitive. AVAILABILITY AND IMPLEMENTATION: Source code is available at Github (https://github.com/1alnoman/ScribbleDom) and Zenodo (https://zenodo.org/badge/latestdoi/681572669).

6.
Mol Biol Evol ; 31(1): 184-200, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24097306

RESUMO

There is growing interest in models of regulatory sequence evolution. However, existing models specifically designed for regulatory sequences consider the independent evolution of individual transcription factor (TF)-binding sites, ignoring that the function and evolution of a binding site depends on its context, typically the cis-regulatory module (CRM) in which the site is located. Moreover, existing models do not account for the gene-specific roles of TF-binding sites, primarily because their roles often are not well understood. We introduce two models of regulatory sequence evolution that address some of the shortcomings of existing models and implement simulation frameworks based on them. One model simulates the evolution of an individual binding site in the context of a CRM, while the other evolves an entire CRM. Both models use a state-of-the art sequence-to-expression model to predict the effects of mutations on the regulatory output of the CRM and determine the strength of selection. We use the new framework to simulate the evolution of TF-binding sites in 37 well-studied CRMs belonging to the anterior-posterior patterning system in Drosophila embryos. We show that these simulations provide accurate fits to evolutionary data from 12 Drosophila genomes, which includes statistics of binding site conservation on relatively short evolutionary scales and site loss across larger divergence times. The new framework allows us, for the first time, to test hypotheses regarding the underlying cis-regulatory code by directly comparing the evolutionary implications of the hypothesis with the observed evolutionary dynamics of binding sites. Using this capability, we find that explicitly modeling self-cooperative DNA binding by the TF Caudal (CAD) provides significantly better fits than an otherwise identical evolutionary simulation that lacks this mechanistic aspect. This hypothesis is further supported by a statistical analysis of the distribution of intersite spacing between adjacent CAD sites. Experimental tests confirm direct homodimeric interaction between CAD molecules as well as self-cooperative DNA binding by CAD. We note that computational modeling of the D. melanogaster CRMs alone did not yield significant evidence to support CAD self-cooperativity. We thus demonstrate how specific mechanistic details encoded in CRMs can be revealed by modeling their evolution and fitting such models to multispecies data.


Assuntos
Simulação por Computador , Elementos Facilitadores Genéticos , Evolução Molecular , Regulação da Expressão Gênica , Animais , Sítios de Ligação/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma , Modelos Genéticos , Ligação Proteica , Análise de Sequência de DNA
7.
PLoS Comput Biol ; 10(3): e1003467, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24604095

RESUMO

Modeling a gene's expression from its intergenic locus and trans-regulatory context is a fundamental goal in computational biology. Owing to the distributed nature of cis-regulatory information and the poorly understood mechanisms that integrate such information, gene locus modeling is a more challenging task than modeling individual enhancers. Here we report the first quantitative model of a gene's expression pattern as a function of its locus. We model the expression readout of a locus in two tiers: 1) combinatorial regulation by transcription factors bound to each enhancer is predicted by a thermodynamics-based model and 2) independent contributions from multiple enhancers are linearly combined to fit the gene expression pattern. The model does not require any prior knowledge about enhancers contributing toward a gene's expression. We demonstrate that the model captures the complex multi-domain expression patterns of anterior-posterior patterning genes in the early Drosophila embryo. Altogether, we model the expression patterns of 27 genes; these include several gap genes, pair-rule genes, and anterior, posterior, trunk, and terminal genes. We find that the model-selected enhancers for each gene overlap strongly with its experimentally characterized enhancers. Our findings also suggest the presence of sequence-segments in the locus that would contribute ectopic expression patterns and hence were "shut down" by the model. We applied our model to identify the transcription factors responsible for forming the stripe boundaries of the studied genes. The resulting network of regulatory interactions exhibits a high level of agreement with known regulatory influences on the target genes. Finally, we analyzed whether and why our assumption of enhancer independence was necessary for the genes we studied. We found a deterioration of expression when binding sites in one enhancer were allowed to influence the readout of another enhancer. Thus, interference between enhancer activities was a possible factor necessitating enhancer independence in our model.


Assuntos
DNA Intergênico , Regulação da Expressão Gênica , Modelos Genéticos , Algoritmos , Animais , Biologia Computacional , Simulação por Computador , Drosophila melanogaster , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Cadeias de Markov , Modelos Estatísticos , Método de Monte Carlo , Sequências Reguladoras de Ácido Nucleico , Termodinâmica , Fatores de Transcrição/metabolismo
8.
Methods ; 62(1): 99-108, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23726942

RESUMO

Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort.


Assuntos
Algoritmos , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Modelos Genéticos , Biologia de Sistemas/métodos , Animais , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero/citologia , Perfilação da Expressão Gênica , Humanos , Termodinâmica , Transcrição Gênica
9.
Genome Biol ; 25(1): 57, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408997

RESUMO

A critical challenge of single-cell spatial transcriptomics (sc-ST) technologies is their panel size. Being based on fluorescence in situ hybridization, they are typically limited to panels of about a thousand genes. This constrains researchers to build panels from only the marker genes of different cell types and forgo other genes of interest, e.g., genes encoding ligand-receptor complexes or those in specific pathways. We propose scGIST, a constrained feature selection tool that designs sc-ST panels prioritizing user-specified genes without compromising cell type detection accuracy. We demonstrate scGIST's efficacy in diverse use cases, highlighting it as a valuable addition to sc-ST's algorithmic toolbox.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Hibridização in Situ Fluorescente
10.
Nat Commun ; 15(1): 538, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225226

RESUMO

Hematopoietic stem cells (HSCs) are capable of regenerating the blood system, but the instructive cues that direct HSCs to regenerate particular lineages lost to the injury remain elusive. Here, we show that iron is increasingly taken up by HSCs during anemia and induces erythroid gene expression and regeneration in a Tet2-dependent manner. Lineage tracing of HSCs reveals that HSCs respond to hemolytic anemia by increasing erythroid output. The number of HSCs in the spleen, but not bone marrow, increases upon anemia and these HSCs exhibit enhanced proliferation, erythroid differentiation, iron uptake, and TET2 protein expression. Increased iron in HSCs promotes DNA demethylation and expression of erythroid genes. Suppressing iron uptake or TET2 expression impairs erythroid genes expression and erythroid differentiation of HSCs; iron supplementation, however, augments these processes. These results establish that the physiological level of iron taken up by HSCs has an instructive role in promoting erythroid-biased differentiation of HSCs.


Assuntos
Anemia , Dioxigenases , Humanos , Baço , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Ferro/metabolismo , Anemia/metabolismo , Células Eritroides , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo
11.
Nat Cardiovasc Res ; 3(3): 283-300, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510108

RESUMO

After myocardial infarction (MI), mammalian hearts do not regenerate, and the microenvironment is disrupted. Hippo signaling loss of function with activation of transcriptional co-factor YAP induces heart renewal and rebuilds the post-MI microenvironment. In this study, we investigated adult renewal-competent mouse hearts expressing an active version of YAP, called YAP5SA, in cardiomyocytes (CMs). Spatial transcriptomics and single-cell RNA sequencing revealed a conserved, renewal-competent CM cell state called adult (a)CM2 with high YAP activity. aCM2 co-localized with cardiac fibroblasts (CFs) expressing complement pathway component C3 and macrophages (MPs) expressing C3ar1 receptor to form a cellular triad in YAP5SA hearts and renewal-competent neonatal hearts. Although aCM2 was detected in adult mouse and human hearts, the cellular triad failed to co-localize in these non-renewing hearts. C3 and C3ar1 loss-of-function experiments indicated that C3a signaling between MPs and CFs was required to assemble the pro-renewal aCM2, C3+ CF and C3ar1+ MP cellular triad.

12.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38012001

RESUMO

Modulation of the heart's immune microenvironment is crucial for recovery after ischemic events such as myocardial infarction (MI). Endothelial cells (ECs) can have immune regulatory functions; however, interactions between ECs and the immune environment in the heart after MI remain poorly understood. We identified an EC-specific IFN responsive and immune regulatory gene signature in adult and pediatric heart failure (HF) tissues. Single-cell transcriptomic analysis of murine hearts subjected to MI uncovered an EC population (IFN-ECs) with immunologic gene signatures similar to those in human HF. IFN-ECs were enriched in regenerative-stage mouse hearts and expressed genes encoding immune responsive transcription factors (Irf7, Batf2, and Stat1). Single-cell chromatin accessibility studies revealed an enrichment of these TF motifs at IFN-EC signature genes. Expression of immune regulatory ligand genes by IFN-ECs suggests bidirectional signaling between IFN-ECs and macrophages in regenerative-stage hearts. Our data suggest that ECs may adopt immune regulatory signatures after cardiac injury to accompany the reparative response. The presence of these signatures in human HF and murine MI models suggests a potential role for EC-mediated immune regulation in responding to stress induced by acute injury in MI and chronic adverse remodeling in HF.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Camundongos , Humanos , Animais , Criança , Células Endoteliais/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Coração , Transdução de Sinais/genética
13.
Mol Biol Cell ; 34(9)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486893

RESUMO

Transcription factors (TFs) are one of the most studied classes of DNA-binding proteins that have a direct functional impact on gene transcription and thus, on human physiology and disease. The mechanisms that TFs use for recognizing target DNA binding sites have been studied for nearly five decades, yet they remain poorly understood. It is classically assumed that a TF recognizes a specific sequence pattern, or motif, as its binding sites. However, recent studies are consistently finding examples of noncanonical binding, that is, TFs binding at sites that do not resemble their sequence motifs. Here we review the current literature on four major types of noncanonical TF binding, namely binding based on DNA shape readout, at Guanine-quadruplex structures, at repeat sequences, and bispecific binding. These examples point to a critical need for studies to unify our current observations, many of which are at odds with the "one TF, one motif" view, into a more comprehensive definition of the DNA-binding specificity of TFs.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Humanos , Sítios de Ligação
14.
iScience ; 26(2): 105945, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36866046

RESUMO

The bendability of genomic DNA impacts chromatin packaging and protein-DNA binding. However, we do not have a comprehensive understanding of the motifs influencing DNA bendability. Recent high-throughput technologies such as Loop-Seq offer an opportunity to address this gap but the lack of accurate and interpretable machine learning models still remains. Here we introduce DeepBend, a convolutional neural network model with convolutions designed to directly capture the motifs underlying DNA bendability and their periodic occurrences or relative arrangements that modulate bendability. DeepBend consistently performs on par with alternative models while giving an extra edge through mechanistic interpretations. Besides confirming the known motifs of DNA bendability, DeepBend also revealed several novel motifs and showed how the spatial patterns of motif occurrences influence bendability. DeepBend's genome-wide prediction of bendability further showed how bendability is linked to chromatin conformation and revealed the motifs controlling the bendability of topologically associated domains and their boundaries.

15.
Adv Healthc Mater ; 12(19): e2203209, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36906514

RESUMO

Radiographic mapping of hypoxia is needed to study a wide range of diseases. Complexes of Eu(II) are a promising class of molecules to fit this need, but they are generally limited by their rapid oxidation rates in vivo. Here, a perfluorocarbon-nanoemulsion perfused with N2 , forms an interface with aqueous layers to hinder oxidation of a new perfluorocarbon-soluble complex of Eu(II). Conversion of the perfluorocarbon solution of Eu(II) into nanoemulsions results in observable differences between reduced and oxidized forms by magnetic resonance imaging both in vitro and in vivo. Oxidation in vivo occurrs over a period of ≈30 min compared to <5 min for a comparable Eu(II)-containing complex without nanoparticle interfaces. These results represent a critical step toward delivery of Eu(II)-containing complexes in vivo for the study of hypoxia.


Assuntos
Európio , Fluorocarbonos , Humanos , Meios de Contraste , Oxigênio , Imageamento por Ressonância Magnética/métodos , Hipóxia
16.
bioRxiv ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-38529510

RESUMO

Cardiac fibrosis, a common pathophysiology associated with various heart diseases, occurs from the excess deposition of extracellular matrix (ECM) 1 . Cardiac fibroblasts (CFs) are the primary cells that produce, degrade, and remodel ECM during homeostasis and tissue repair 2 . Upon injury, CFs gain plasticity to differentiate into myofibroblasts 3 and adipocyte-like 4,5 and osteoblast-like 6 cells, promoting fibrosis and impairing heart function 7 . How CFs maintain their cell state during homeostasis and adapt plasticity upon injury are not well defined. Recent studies have shown that Hippo signalling in CFs regulates cardiac fibrosis and inflammation 8-11 . Here, we used single-nucleus RNA sequencing (snRNA-seq) and spatially resolved transcriptomic profiling (ST) to investigate how the cell state was altered in the absence of Hippo signaling and how Hippo-deficient CFs interact with macrophages during cardiac fibrosis. We found that Hippo-deficient CFs differentiate into osteochondroprogenitors (OCPs), suggesting that Hippo restricts CF plasticity. Furthermore, Hippo-deficient CFs colocalized with macrophages, suggesting their intercellular communications. Indeed, we identified several ligand-receptor pairs between the Hippo-deficient CFs and macrophages. Blocking the Hippo-deficient CF-induced CSF1 signaling abolished macrophage expansion. Interestingly, blocking macrophage expansion also reduced OCP differentiation of Hippo-deficient CFs, indicating that macrophages promote CF plasticity.

17.
Cell Syst ; 13(5): 351-352, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35588698

RESUMO

Spatial transcriptomics (ST) can catalyze discoveries linking tissue function with spatial organization of cell types. However, technical variations and subtle differences between cell subtypes make this a challenging goal. Recent algorithms that carefully incorporate the details of the ST data generation process show the promise to overcome these challenges.


Assuntos
Algoritmos , Transcriptoma
18.
Cell Syst ; 13(1): 58-70.e5, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34626538

RESUMO

Single-cell spatial transcriptomics (sc-ST) holds the promise to elucidate architectural aspects of complex tissues. Such analyses require modeling cell types in sc-ST datasets through their integration with single-cell RNA-seq datasets. However, this integration, is nontrivial since the two technologies differ widely in the number of profiled genes, and the datasets often do not share many marker genes for given cell types. We developed a neural network model, spatial transcriptomics cell-types assignment using neural networks (STANN), to overcome these challenges. Analysis of STANN's predicted cell types in mouse olfactory bulb (MOB) sc-ST data delineated MOB architecture beyond its morphological layer-based conventional description. We find that cell-type proportions remain consistent within individual morphological layers but vary significantly between layers. Notably, even within a layer, cellular colocalization patterns and intercellular communication mechanisms show high spatial variations. These observations imply a refinement of major cell types into subtypes characterized by spatially localized gene regulatory networks and receptor-ligand usage.


Assuntos
Análise de Célula Única , Transcriptoma , Animais , Encéfalo/metabolismo , Redes Reguladoras de Genes , Camundongos , Redes Neurais de Computação , Transcriptoma/genética
19.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471998

RESUMO

Atrial fibrillation (AF), the most common sustained cardiac arrhythmia and a major risk factor for stroke, often arises through ectopic electrical impulses derived from the pulmonary veins (PVs). Sequence variants in enhancers controlling expression of the transcription factor PITX2, which is expressed in the cardiomyocytes (CMs) of the PV and left atrium (LA), have been implicated in AF predisposition. Single nuclei multiomic profiling of RNA and analysis of chromatin accessibility combined with spectral clustering uncovered distinct PV- and LA-enriched CM cell states. Pitx2-mutant PV and LA CMs exhibited gene expression changes consistent with cardiac dysfunction through cell type-distinct, PITX2-directed, cis-regulatory grammars controlling target gene expression. The perturbed network targets in each CM were enriched in distinct human AF predisposition genes, suggesting combinatorial risk for AF genesis. Our data further reveal that PV and LA Pitx2-mutant CMs signal to endothelial and endocardial cells through BMP10 signaling with pathogenic potential. This work provides a multiomic framework for interrogating the basis of AF predisposition in the PVs of humans.


Assuntos
Fibrilação Atrial , Proteínas de Homeodomínio , Fatores de Transcrição , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Redes Reguladoras de Genes , Átrios do Coração/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
20.
Biosensors (Basel) ; 12(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35884281

RESUMO

Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.


Assuntos
Neoplasias , Humanos , Hipóxia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA