RESUMO
The human enteric nervous system, ENS, is a large network of glial and neuronal cell types with remarkable neurotransmitter diversity. The ENS controls bowel motility, enzyme secretion, and nutrient absorption and interacts with the immune system and the gut microbiome. Consequently, developmental and acquired defects of the ENS are responsible for many human diseases and may contribute to symptoms of Parkinson's disease. Limitations in animal model systems and access to primary tissue pose significant experimental challenges in studies of the human ENS. Here, a detailed protocol is presented for effective in vitro derivation of the ENS lineages from human pluripotent stem cells, hPSC, using defined culture conditions. Our protocol begins with directed differentiation of hPSCs to enteric neural crest cells within 15 days and yields diverse subtypes of functional enteric neurons within 30 days. This platform provides a scalable resource for developmental studies, disease modeling, drug discovery, and regenerative applications.
Assuntos
Diferenciação Celular , Sistema Nervoso Entérico , Crista Neural , Células-Tronco Pluripotentes , Humanos , Sistema Nervoso Entérico/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/fisiologia , Crista Neural/citologia , Técnicas Citológicas/métodos , Neurônios/citologiaRESUMO
The enteric nervous system (ENS) is a tantalizing frontier in neuroscience. With the recent emergence of single cell transcriptomic technologies, this rare and poorly understood tissue has begun to be better characterized in recent years. A precise functional mapping of enteric neuron diversity is critical for understanding ENS biology and enteric neuropathies. Nonetheless, this pursuit has faced considerable technical challenges. By leveraging different methods to compare available primary mouse and human ENS datasets, we underscore the urgent need for careful identity annotation, achieved through the harmonization and advancements of wet lab and computational techniques. We took different approaches including differential gene expression, module scoring, co-expression and correlation analysis, unbiased biological function hierarchical clustering, data integration and label transfer to compare and contrast functional annotations of several independently reported ENS datasets. These analyses highlight substantial discrepancies stemming from an overreliance on transcriptomics data without adequate validation in tissues. To achieve a comprehensive understanding of enteric neuron identity and their functional context, it is imperative to expand tissue sources and incorporate innovative technologies such as multiplexed imaging, electrophysiology, spatial transcriptomics, as well as comprehensive profiling of epigenome, proteome, and metabolome. Harnessing human pluripotent stem cell (hPSC) models provides unique opportunities for delineating lineage trees of the human ENS, and offers unparalleled advantages, including their scalability and compatibility with genetic manipulation and unbiased screens. We encourage a paradigm shift in our comprehension of cellular complexity and function in the ENS by calling for large-scale collaborative efforts and research investments.
RESUMO
Disorders of gut-brain interaction (DGBIs), formerly known as functional gastrointestinal disorders, are extremely common and historically difficult to manage. This is largely because their cellular and molecular mechanisms have remained poorly understood and understudied. One approach to unravel the molecular underpinnings of complex disorders such as DGBIs is performing genome wide association studies (GWASs). However, due to the heterogenous and non-specific nature of GI symptoms, it has been difficult to accurately classify cases and controls. Thus, to perform reliable studies, we need to access large patient populations which has been difficult to date. Here, we leveraged the UK Biobank (UKBB) database, containing genetic and medical record data of over half a million individuals, to perform GWAS for five DGBI categories: functional chest pain, functional diarrhea, functional dyspepsia, functional dysphagia, and functional fecal incontinence. By applying strict inclusion and exclusion criteria, we resolved patient populations and identified genes significantly associated with each condition. Leveraging multiple human single-cell RNA-sequencing datasets, we found that the disease associated genes were highly expressed in enteric neurons, which innervate and control GI functions. Further expression and association testing-based analyses revealed specific enteric neuron subtypes consistently linked with each DGBI. Furthermore, protein-protein interaction analysis of each of the disease associated genes revealed protein networks specific to each DGBI, including hedgehog signaling for functional chest pain and neuronal function and neurotransmission for functional diarrhea and functional dyspepsia. Finally, through retrospective medical record analysis we found that drugs that inhibit these networks are associated with an increased disease risk, including serine/threonine kinase 32B drugs for functional chest pain, solute carrier organic anion transporter family member 4C1, mitogen-activated protein kinase 6, and dual serine/threonine and tyrosine protein kinase drugs for functional dyspepsia, and serotonin transporter drugs for functional diarrhea. This study presents a robust strategy for uncovering the tissues, cell types, and genes involved in DGBIs, presenting novel predictions of the mechanisms underlying these historically intractable and poorly understood diseases.
RESUMO
The neural crest (NC) is highly multipotent and generates diverse lineages in the developing embryo. However, spatiotemporally distinct NC populations display differences in fate potential, such as increased gliogenic and parasympathetic potential from later migrating, nerve-associated Schwann cell precursors (SCPs). Interestingly, while melanogenic potential is shared by both early migrating NC and SCPs, differences in melanocyte identity resulting from differentiation through these temporally distinct progenitors have not been determined. Here, we leverage a human pluripotent stem cell (hPSC) model of NC temporal patterning to comprehensively characterize human NC heterogeneity, fate bias, and lineage development. We captured the transition of NC differentiation between temporally and transcriptionally distinct melanogenic progenitors and identified modules of candidate transcription factor and signaling activity associated with this transition. For the first time, we established a protocol for the directed differentiation of melanocytes from hPSCs through a SCP intermediate, termed trajectory 2 (T2) melanocytes. Leveraging an existing protocol for differentiating early NC-derived melanocytes, termed trajectory 1 (T1), we performed the first comprehensive comparison of transcriptional and functional differences between these distinct melanocyte populations, revealing differences in pigmentation and unique expression of transcription factors, ligands, receptors and surface markers. We found a significant link between the T2 melanocyte transcriptional signature and decreased survival in melanoma patients in the cancer genome atlas (TCGA). We performed an in vivo CRISPRi screen of T1 and T2 melanocyte signature genes in a human melanoma cell line and discovered several T2-specific markers that promote lung metastasis in mice. We further demonstrated that one of these factors, SNRPB, regulates the splicing of transcripts involved in metastasis relevant functions such as migration, cell adhesion and proliferation. Overall, this study identifies distinct developmental trajectories as a source of diversity in melanocytes and implicates the unique molecular signature of SCP-derived melanocytes in metastatic melanoma.
RESUMO
Despite the surrounding controversy, quantitative sex-based differences exist in the human brain. In a recent issue of Nature, Kelava et al. shed light on the mechanisms underlying increased brain volume and neuron density in males, while highlighting the importance of human PSC-derived organoids for studying human development.
Assuntos
Androgênios , Organoides , Androgênios/farmacologia , Encéfalo , Humanos , NeurôniosRESUMO
The sinoatrial node (SAN) is the primary pacemaker of the heart. The human SAN is poorly understood due to limited primary tissue access and limitations in robust in vitro derivation methods. We developed a dual SHOX2:GFP; MYH6:mCherry knockin human embryonic stem cell (hESC) reporter line, which allows the identification and purification of SAN-like cells. Using this line, we performed several rounds of chemical screens and developed an efficient strategy to generate and purify hESC-derived SAN-like cells (hESC-SAN). The derived hESC-SAN cells display molecular and electrophysiological characteristics of bona fide nodal cells, which allowed exploration of their transcriptional profile at single-cell level. In sum, our dual reporter system facilitated an effective strategy for deriving human SAN-like cells, which can potentially be used for future disease modeling and drug discovery.
RESUMO
SARS-CoV-2 infection has led to a global health crisis, and yet our understanding of the disease and potential treatment options remains limited. The infection occurs through binding of the virus with angiotensin converting enzyme 2 (ACE2) on the cell membrane. Here, we established a screening strategy to identify drugs that reduce ACE2 levels in human embryonic stem cell (hESC)-derived cardiac cells and lung organoids. Target analysis of hit compounds revealed androgen signaling as a key modulator of ACE2 levels. Treatment with antiandrogenic drugs reduced ACE2 expression and protected hESC-derived lung organoids against SARS-CoV-2 infection. Finally, clinical data on COVID-19 patients demonstrated that prostate diseases, which are linked to elevated androgen, are significant risk factors and that genetic variants that increase androgen levels are associated with higher disease severity. These findings offer insights on the mechanism of disproportionate disease susceptibility in men and identify antiandrogenic drugs as candidate therapeutics for COVID-19.