Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108208

RESUMO

Glioblastoma (GBM) is the most common and malignant primary brain cancer in adults. Without treatment the mean patient survival is approximately 6 months, which can be extended to 15 months with the use of multimodal therapies. The low effectiveness of GBM therapies is mainly due to the tumor infiltration into the healthy brain tissue, which depends on GBM cells' interaction with the tumor microenvironment (TME). The interaction of GBM cells with the TME involves cellular components such as stem-like cells, glia, endothelial cells, and non-cellular components such as the extracellular matrix, enhanced hypoxia, and soluble factors such as adenosine, which promote GBM's invasiveness. However, here we highlight the role of 3D patient-derived glioblastoma organoids cultures as a new platform for study of the modeling of TME and invasiveness. In this review, the mechanisms involved in GBM-microenvironment interaction are described and discussed, proposing potential prognosis biomarkers and new therapeutic targets.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/terapia , Glioblastoma/patologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Células Endoteliais/patologia , Encéfalo/patologia , Matriz Extracelular/patologia , Microambiente Tumoral , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012307

RESUMO

Glioblastoma is the most common and aggressive primary brain tumor, characterized by its high chemoresistance and the presence of a cell subpopulation that persists under hypoxic niches, called glioblastoma stem-like cells (GSCs). The chemoresistance of GSCs is mediated in part by adenosine signaling and ABC transporters, which extrude drugs outside the cell, such as the multidrug resistance-associated proteins (MRPs) subfamily. Adenosine promotes MRP1-dependent chemoresistance under normoxia. However, adenosine/MRPs-dependent chemoresistance under hypoxia has not been studied until now. Transcript and protein levels were determined by RT-qPCR and Western blot, respectively. MRP extrusion capacity was determined by intracellular 5 (6)-Carboxyfluorescein diacetate (CFDA) accumulation. Cell viability was measured by MTS assays. Cell cycle and apoptosis were determined by flow cytometry. Here, we show for the first time that MRP3 expression is induced under hypoxia through the A2B adenosine receptor. Hypoxia enhances MRP-dependent extrusion capacity and the chemoresistance of GSCs. Meanwhile, MRP3 knockdown decreases GSC viability under hypoxia. Downregulation of the A2B receptor decreases MRP3 expression and chemosensibilizes GSCs treated with teniposide under hypoxia. These data suggest that hypoxia-dependent activation of A2B adenosine receptor promotes survival of GSCs through MRP3 induction.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Adenosina/metabolismo , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Humanos , Hipóxia/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor A2B de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo
3.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233484

RESUMO

Pretransplant graft inflammation could be involved in the worse prognosis of deceased donor (DD) kidney transplants. A2A adenosine receptor (A2AR) can stimulate anti-inflammatory M2 macrophages, leading to fibrosis if injury and inflammation persist. Pre-implantation biopsies of kidney donors (47 DD and 21 living donors (LD)) were used to analyze expression levels and activated intracellular pathways related to inflammatory and pro-fibrotic processes. A2AR expression and PKA pathway were enhanced in DD kidneys. A2AR gene expression correlated with TGF-ß1 and other profibrotic markers, as well as CD163, C/EBPß, and Col1A1, which are highly expressed in DD kidneys. TNF-α mRNA levels correlated with profibrotic and anti-inflammatory factors such as TGF-ß1 and A2AR. Experiments with THP-1 cells point to the involvement of the TNF-α/NF-κB pathway in the up-regulation of A2AR, which induces the M2 phenotype increasing CD163 and TGF-ß1 expression. In DD kidneys, the TNF-α/NF-κB pathway could be involved in the increase of A2AR expression, which would activate the PKA-CREB axis, inducing the macrophage M2 phenotype, TGF-ß1 production, and ultimately, fibrosis. Thus, in inflamed DD kidneys, an increase in A2AR expression is associated with the onset of fibrosis, which may contribute to graft dysfunction and prognostic differences between DD and LD transplants.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Transplante de Rim , Receptor A2A de Adenosina/genética , Fibrose/genética , Fibrose/patologia , Fibrose/terapia , Regulação da Expressão Gênica/genética , Humanos , Inflamação/genética , Inflamação/patologia , Inflamação/terapia , Rim/metabolismo , Rim/patologia , Macrófagos/metabolismo , Macrófagos/patologia , NF-kappa B/genética , Doadores de Tecidos , Fator de Crescimento Transformador beta1/genética , Fator de Necrose Tumoral alfa/genética
4.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540220

RESUMO

Diabetic nephropathy (DN) is the main cause of end-stage renal disease, which remains incurable. The progression of DN is associated with progressive and irreversible renal fibrosis and also high levels of adenosine. Our aim was to evaluate the effects of ADORA3 antagonism on renal injury in streptozotocin-induced diabetic rats. An ADORA3 antagonist that was administered in diabetic rats greatly inhibited the levels of inflammatory interleukins IL-1ß and IL-18, meanwhile when adenosine deaminase was administered, there was a non-selective attenuation of the inflammatory mediators IL-1ß, IL-18, IL-6, and induction of IL-10. The ADORA3 antagonist attenuated the high glucose-induced activation of caspase 1 in HK2 cells in vitro. Additionally, ADORA3 antagonisms blocked the increase in caspase 1 and the nuclear localization of NFκB in the renal tubular epithelium of diabetic rats, both events that are involved in regulating the production and activation of IL-1ß and IL-18. The effects of the A3 receptor antagonist resulted in the attenuation of kidney injury, as evidenced by decreased levels of the pro-fibrotic marker α-SMA at histological levels and the restoration of proteinuria in diabetic rats. We conclude that ADORA3 antagonism represents a potential therapeutic target that mechanistically works through the selective blockade of the NLRP3 inflammasome.


Assuntos
Antagonistas do Receptor A3 de Adenosina/administração & dosagem , Caspase 1/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Antagonistas do Receptor A3 de Adenosina/farmacologia , Adenosina Desaminase/efeitos adversos , Animais , Linhagem Celular , Diabetes Mellitus Experimental/enzimologia , Nefropatias Diabéticas/induzido quimicamente , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Injeções Intraperitoneais , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/enzimologia , Masculino , Ratos , Estreptozocina
5.
Int J Mol Sci ; 19(4)2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670017

RESUMO

Glioblastoma (GBM) is a neoplasm characterized by an extensive blood vessel network. Hypoxic niches of GBM can induce tumorigenic properties of a small cell subpopulation called Glioblastoma stem-like cells (GSCs) and can also increase extracellular adenosine generation which activates the A3 adenosine receptor (A3AR). Moreover, GSCs potentiates the persistent neovascularization in GBM. The aim of this study was to determine if A3AR blockade can reduce the vasculogenesis mediated by the differentiation of GSCs to Endothelial Cells (ECs) under hypoxia. We evaluated the expression of endothelial cell markers (CD31, CD34, CD144, and vWF) by fluorescence-activated cell sorting (FACS), and vascular endothelial growth factor (VEGF) secretion by ELISA using MRS1220 (A3AR antagonist) under hypoxia. We validate our results using U87MG-GSCs A3AR knockout (GSCsA3-KO). The effect of MRS1220 on blood vessel formation was evaluated in vivo using a subcutaneous GSCs-tumor model. GSCs increased extracellular adenosine production and A3AR expression under hypoxia. Hypoxia also increased the percentage of GSCs positive for endothelial cell markers and VEGF secretion, which was in turn prevented when using MRS1220 and in GSCsA3-KO. Finally, in vivo treatment with MRS1220 reduced tumor size and blood vessel formation. Blockade of A3AR decreases the differentiation of GSCs to ECs under hypoxia and in vivo blood vessel formation.


Assuntos
Diferenciação Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Receptor A3 de Adenosina/metabolismo , Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Humanos , Masculino , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Sprague-Dawley
6.
Purinergic Signal ; 13(4): 479-488, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28721552

RESUMO

We aim to investigate whether overweight/obese pregnant women have elevated plasma levels of adenosine associated with increased consumption of high-calorie food. Sixty women were included. They were divided into lean (n = 23 and n = 12) or overweight/obese (n = 7 and n = 18) non-pregnant and pregnant women, respectively. Clinical records and maternal blood samples were collected after informed consent. A self-reported dietary questionnaire was also completed. Plasma adenosine levels were determined with high-performance liquid chromatography. Biochemical parameters, including glucose, total protein, and lipid profile, were determined using standard colorimetric assays. Adenosine levels were higher in pregnant women than in non-pregnant women (18.7 ± 1.6 vs 10.8 ± 1.3 nM/µg protein, respectively, p < 0.0001). Overweight/obese pregnant women (21.9 ± 2.5 nM/µg protein) exhibited higher adenosine levels than lean pregnant (14.5 ± 1.0 nM/µg protein, p = 0.04) or non-pregnant women (11.7 ± 1.5 nM/µg protein, p = 0.0005). Also, pregnant women with elevated weight gain exhibited higher (26.2 ± 3.7 nM/µg protein) adenosine levels than those with adequate weight gain (14.9 ± 1.4 nM/µg protein, p = 0.03). These differences were not statistically significant compared with those of pregnant women with reduced weight gain (17.4 ± 2.1 nM/µg protein, p = 0.053). Body mass index and adenosine only in pregnant women were positively correlated (r = 0.39, p = 0.02). While, polyunsaturated fatty acid (PUFA) consumption was negatively correlated with plasma adenosine levels only in non-pregnant women (r = -0.33, p = 0.03). Pregnancy is associated with high plasma adenosine levels, which are further elevated in pregnant women who are overweight/obese. High PUFA intake might reduce plasma adenosine levels in non-pregnant women.


Assuntos
Adenosina/sangue , Obesidade/sangue , Sobrepeso/sangue , Complicações na Gravidez/sangue , Adulto , Índice de Massa Corporal , Estudos Transversais , Dieta , Feminino , Humanos , Gravidez , Aumento de Peso
7.
Cytokine ; 88: 115-125, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27599257

RESUMO

Renal fibrosis is a common irreversible process of chronic kidney disease (CKD) characterized by uncontrolled deposits of extracellular matrix, replacement of cellular parenchyma and progressive loss of renal function. Recent evidence suggests that a series of phenotypic transformations of resident renal cells are responsible for the formation of interstitial myofibroblasts, cells that play a key role in the fibrotic process. In the renal glomerulus transformation of mesangial cells to myofibroblasts is an event that orchestrates glomerulosclerosis and the participation of other cells types has also been suggested. Recent findings clarify the role of tubular epithelium in mediating the generation of ECM producing cells in the tubule interstitium. Also, crosstalk between injured cells and myofibroblasts for amplification of the fibrogenic cascade in CKD occurs. The crucial conductor of these changes in the kidney is the transforming growth factor-ß (TGF-ß). Thus, this review focuses on the control of this cytokines signaling mechanisms and their dysregulation in CKD. Further, some of the promising interventional alternatives targeting TGF-ß are also discussed.


Assuntos
Túbulos Renais/metabolismo , Miofibroblastos/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Fibrose , Humanos , Túbulos Renais/patologia , Miofibroblastos/patologia , Insuficiência Renal Crônica/patologia
8.
J Neurooncol ; 128(1): 9-19, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26900077

RESUMO

The most aggressive type of brain tumor is glioblastoma multiforme, which to date remains incurable. Thuja occidentalis is used in homeopathy for the treatment of cancer, however, its mechanism of action remains unknown. We set out to study the effects of thujone fractions of Thuja on glioblastoma using in vitro and in vivo models. We found that the α/ ß-thujone fraction decrease the cell viability and exhibit a potent anti-proliferative, pro-apoptotic and anti-angiogenic effects in vitro. In vivo assays showed that α /ß-thujone promotes the regression of neoplasia and inhibits the angiogenic markers VEGF, Ang-4 and CD31 into the tumor.


Assuntos
Antineoplásicos/farmacologia , Glioblastoma/tratamento farmacológico , Monoterpenos/farmacologia , Fitoterapia , Extratos Vegetais/farmacologia , Thuja , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Monoterpenos Bicíclicos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Glioblastoma/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Masculino , Transplante de Neoplasias , Ratos Sprague-Dawley
9.
Cells ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786068

RESUMO

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Assuntos
Adesão Celular , Diabetes Mellitus Experimental , Proteína-Tirosina Quinases de Adesão Focal , Podócitos , Proteinúria , Receptor A2B de Adenosina , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Animais , Humanos , Proteinúria/metabolismo , Ratos , Receptor A2B de Adenosina/metabolismo , Adesão Celular/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Masculino , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/tratamento farmacológico , Antagonistas do Receptor A2 de Adenosina/farmacologia , Adenosina/metabolismo , Adenosina/farmacologia , Movimento Celular/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo
10.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38794149

RESUMO

Glioblastoma (GB) is the most aggressive and common primary malignant tumor of the brain and central nervous system. Without treatment, the average patient survival time is about six months, which can be extended to fifteen months with multimodal therapies. The chemoresistance observed in GB is, in part, attributed to the presence of a subpopulation of glioblastoma-like stem cells (GSCs) that are characterized by heightened tumorigenic capacity and chemoresistance. GSCs are situated in hypoxic tumor niches, where they sustain and promote the stem-like phenotype and have also been correlated with high chemoresistance. GSCs have the particularity of generating high levels of extracellular adenosine (ADO), which causes the activation of the A3 adenosine receptor (A3AR) with a consequent increase in the expression and activity of genes related to chemoresistance. Therefore, targeting its components is a promising alternative for treating GB. This analysis determined genes that were up- and downregulated due to A3AR blockades under both normoxic and hypoxic conditions. In addition, possible candidates associated with chemoresistance that were positively regulated by hypoxia and negatively regulated by A3AR blockades in the same condition were analyzed. We detected three potential candidate genes that were regulated by the A3AR antagonist MRS1220 under hypoxic conditions: LIMD1, TRIB2, and TGFB1. Finally, the selected markers were correlated with hypoxia-inducible genes and with the expression of adenosine-producing ectonucleotidases. In conclusion, we detected that hypoxic conditions generate extensive differential gene expression in GSCs, increasing the expression of genes associated with chemoresistance. Furthermore, we observed that MRS1220 could regulate the expression of LIMD1, TRIB2, and TGFB1, which are involved in chemoresistance and correlate with a poor prognosis, hypoxia, and purinergic signaling.

11.
J Cell Physiol ; 228(3): 602-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22833450

RESUMO

Glioblastoma multiforme (GBM) cells are characterised by their extreme chemoresistance. The activity of multiple-drug resistance (MDR) transporters that extrude antitumor drugs from cells plays the most important role in this phenomenon. To date, the mechanism controlling the expression and activity of MDR transporters is poorly understood. Activity of the enzyme ecto-5'-nucleotidase (CD73) in tumor cells, which hydrolyses AMP to adenosine, has been linked to immunosuppression and prometastatic effects in breast cancer and to the proliferation of glioma cells. In this study, we identify a high expression of CD73 in surgically resected samples of human GBM. In primary cultures of GBM, inhibition of CD73 activity or knocking down its expression by siRNA reversed the MDR phenotype and cell viability was decreased up to 60% on exposure to the antitumoral drug vincristine. This GBM chemosensitization was caused by a decrease in the expression and activity of the multiple drug associated protein 1 (Mrp1), the most important transporter conferring multiple drug resistance in these cells. Using pharmacological modulators, we have recognized the adenosine A(3) receptor subtype in mediation of the chemoresistant phenotype in these cells. In conclusion, we have determined that the activity of CD73 to trigger adenosine signaling sustains chemoresistant phenotype in GBM cells.


Assuntos
5'-Nucleotidase/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , Sequência de Bases , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais , Vincristina/farmacologia
12.
J Cell Biochem ; 114(3): 639-49, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23059533

RESUMO

Diabetes is the major cause of end stage renal disease, and tubular alterations are now considered to participate in the development and progression of diabetic nephropathy (DN). Here, we report for the first time that expression of the insulin receptor (IR) in human kidney is altered during diabetes. We detected a strong expression in proximal and distal tubules from human renal cortex, and a significant reduction in type 2 diabetic patients. Moreover, isolated proximal tubules from type 1 diabetic rat kidney showed a similar response, supporting its use as an excellent model for in vitro study of human DN. IR protein down-regulation was paralleled in proximal and distal tubules from diabetic rats, but prominent in proximal tubules from diabetic patients. A target of renal insulin signaling, the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), showed increased expression and activity, and localization in compartments near the apical membrane of proximal tubules, which was correlated with activation of the GSK3ß kinase in this specific renal structure in the diabetic condition. Thus, expression of IR protein in proximal tubules from type 1 and type 2 diabetic kidney indicates that this is a common regulatory mechanism which is altered in DN, triggering enhanced gluconeogenesis regardless the etiology of the disease.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/metabolismo , Túbulos Renais Proximais/metabolismo , Receptor de Insulina/metabolismo , Idoso , Animais , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Ativação Enzimática , Feminino , Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Insulina/metabolismo , Córtex Renal/metabolismo , Masculino , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/genética , Transdução de Sinais
13.
Lab Invest ; 93(1): 135-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23069939

RESUMO

Diabetic nephropathy ranks as the most devastating kidney disease worldwide. It characterizes in the early onset by glomerular hypertrophy, hyperfiltration and mesangial expansion. Experimental models show that overproduction of vascular endothelial growth factor (VEGF) is a pathogenic condition for podocytopathy; however the mechanisms that regulate this growth factor induction are not clearly identified. We determined that the adenosine A(2B) receptor (A(2B)AR) mediates VEGF overproduction in ex vivo glomeruli exposed to high glucose concentration, requiring PKCα and Erk1/2 activation. The glomerular content of A(2B)AR was concomitantly increased with VEGF at early stages of renal disease in streptozotocin-induced diabetic rats. Further, in vivo administration of an antagonist of A(2B)AR in diabetic rats blocked the glomerular overexpression of VEGF, mesangial cells activation and proteinuria. In addition, we also determined that the accumulation of extracellular adenosine occurs in glomeruli of diabetic rats. Correspondingly, raised urinary adenosine levels were found in diabetic rats. In conclusion, we evidenced that adenosine signaling at the onset of diabetic kidney disease is a pathogenic event that promotes VEGF induction.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Receptor A2B de Adenosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acetamidas/farmacologia , Adenosina/metabolismo , Adenosina/urina , Animais , Glicemia/metabolismo , Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Diabetes Mellitus Experimental/urina , Nefropatias Diabéticas/urina , Histocitoquímica , Glomérulos Renais/química , Glomérulos Renais/metabolismo , Masculino , Purinas/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
14.
J Cell Biochem ; 113(3): 848-56, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22021109

RESUMO

Using a streptozotocin-induced type 1 diabetic rat model, we analyzed and separated the effects of hyperglycemia and hyperinsulinemia over the in vivo expression and subcellular localization of hepatic fructose 1,6-bisphosphatase (FBPase) in the multicellular context of the liver. Our data showed that FBPase subcellular localization was modulated by the nutritional state in normal but not in diabetic rats. By contrast, the liver zonation was not affected in any condition. In healthy starved rats, FBPase was localized in the cytoplasm of hepatocytes, whereas in healthy re-fed rats it was concentrated in the nucleus and the cell periphery. Interestingly, despite the hyperglycemia, FBPase was unable to accumulate in the nucleus in hepatocytes from streptozotocin-induced diabetic rats, suggesting that insulin is a critical in vivo modulator. This idea was confirmed by exogenous insulin supplementation to diabetic rats, where insulin was able to induce the rapid accumulation of FBPase within the hepatocyte nucleus. Besides, hepatic FBPase was found phosphorylated only in the cytoplasm, suggesting that the phosphorylation state is involved in the nuclear translocation. In conclusion, insulin and not hyperglycemia plays a crucial role in the nuclear accumulation of FBPase in vivo and may be an important regulatory mechanism that could account for the increased endogenous glucose production of liver of diabetic rodents.


Assuntos
Núcleo Celular/enzimologia , Diabetes Mellitus Experimental/enzimologia , Frutose-Bifosfatase/metabolismo , Fígado/enzimologia , Animais , Frutose-Bifosfatase/análise , Insulina/farmacologia , Fígado/efeitos dos fármacos , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley
15.
Biology (Basel) ; 11(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35205179

RESUMO

Glioblastoma (GBM) is the most frequent and aggressive brain tumor, characterized by great resistance to treatments, as well as inter- and intra-tumoral heterogeneity. GBM exhibits infiltration, vascularization and hypoxia-associated necrosis, characteristics that shape a unique microenvironment in which diverse cell types are integrated. A subpopulation of cells denominated GBM stem-like cells (GSCs) exhibits multipotency and self-renewal capacity. GSCs are considered the conductors of tumor progression due to their high tumorigenic capacity, enhanced proliferation, invasion and therapeutic resistance compared to non-GSCs cells. GSCs have been classified into two molecular subtypes: proneural and mesenchymal, the latter showing a more aggressive phenotype. Tumor microenvironment and therapy can induce a proneural-to-mesenchymal transition, as a mechanism of adaptation and resistance to treatments. In addition, GSCs can transition between quiescent and proliferative substates, allowing them to persist in different niches and adapt to different stages of tumor progression. Three niches have been described for GSCs: hypoxic/necrotic, invasive and perivascular, enhancing metabolic changes and cellular interactions shaping GSCs phenotype through metabolic changes and cellular interactions that favor their stemness. The phenotypic flexibility of GSCs to adapt to each niche is modulated by dynamic epigenetic modifications. Methylases, demethylases and histone deacetylase are deregulated in GSCs, allowing them to unlock transcriptional programs that are necessary for cell survival and plasticity. In this review, we described the effects of GSCs plasticity on GBM progression, discussing the role of GSCs niches on modulating their phenotype. Finally, we described epigenetic alterations in GSCs that are important for stemness, cell fate and therapeutic resistance.

16.
Biol Chem ; 392(6): 529-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21495913

RESUMO

Oxidative stress has been linked to the podocytopathy, mesangial expansion and progression of diabetic nephropathy. The major cell defence mechanism against oxidative stress is reduced glutathione (GSH). Some ABC transporters have been shown to extrude GSH, oxidised glutathione or their conjugates out of the cell, thus implying a role for these transporters in GSH homeostasis. We found a remarkable expression of mRNA for multidrug resistance-associated proteins (MRP/ABCC) 1, 3, 4 and 5 in rat glomeruli. Three weeks after induction of diabetes in glomeruli of streptozotocin-treated rats, we observed a decline in reduced GSH levels and an increase in the expression and activity of MRP1 (ABCC1). These lower GSH levels were improved by ex vivo treatment with pharmacological inhibitors of MRP1 activity (MK571). We conclude that increased activity of MRP1 in diabetic glomeruli is correlated with an inadequate adaptive response to oxidative stress.


Assuntos
Diabetes Mellitus Experimental/genética , Glomérulos Renais/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Glutationa/metabolismo , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Propionatos/farmacologia , Quinolinas/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estreptozocina , Relação Estrutura-Atividade
17.
Neurochem Res ; 36(8): 1397-406, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21544552

RESUMO

Glioblastoma multiforme (GBM) is a brain tumour characterised by a remarkably high chemoresistance and infiltrating capability. To date, chemotherapy with temozolomide has contributed only poorly to improved survival rates in patients. One of the most important mechanisms of chemoresistance comes about through the activity of certain proteins from the ATP-binding cassette superfamily that extrudes antitumour drugs, or their metabolites, from cells. We identify an increased expression of the multiple drug resistance-associated protein 1 (Mrp1) in glioblastoma multiforme biopsies and in T98G and G44 cell lines. The activity of this transporter was also confirmed by measuring the extrusion of the fluorescent substrate CFDA. The sensitivity of GBM cells was low upon exposure to temozolomide, vincristine and etoposide, with decreases in cell viability of below 20% seen at therapeutic concentrations of these drugs. However, combined exposure to vincristine or etoposide with an inhibitor of Mrp1 efficiently decreased cell viability by up to 80%. We conclude that chemosensitization of cells with inhibitors of Mrp1 activity might be an efficient tool for the treatment of human GBM.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias Encefálicas/patologia , Criança , Quimioterapia Combinada , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Glioblastoma/patologia , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Vincristina/farmacologia , Vincristina/uso terapêutico
18.
Rev Med Chil ; 139(4): 415-24, 2011 Apr.
Artigo em Espanhol | MEDLINE | ID: mdl-21879178

RESUMO

BACKGROUND: Mortality rate is dramatically high in high grade brain tumors. The presence of multiple drug resistance transporters in glioblastoma multiforme, has contributed largely to the poor efficacy of targeted therapy against cancer in the central nervous system. AIM: To analyze the percentage of survival and mortality of patients with glioblastoma multiforme in a cohort of patients in Chile and to co-rrelate the chemo-resistance of these cells with the expression level of multiple drug resistance transporters. MATERIALS AND METHODS: Eighteen biopsies of glioblastoma multiforme were obtained from patients at the Institute of Neurosurgery Dr. Asenjo (INCA). The tumor cells were obtained from primary cultures and the expression and activity of multiple drug resistance transporters was assessed by RT-PCR and immunohistochemistry. Population-based study was performed using the databases of the Department of Neurosurgery of INCA. RESULTS: The number of patients with glioblastoma multiforme increased between 2007 and 2009, from 3.5% to 7.9% of total brain tumors. Mortality of these tumors is 90 % at three years. A high expression and activity of the multiple drugs resistance associated protein 1 (Mrp1) transporter was observed in primary cultures of biopsies. CONCLUSIONS: We propose that Mrp1 activity is responsible for the chemo-resistance of the glioblastoma multiforme and inhibition of this transporter could represent a plausible strategy for the treatment.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Seguimentos , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida , Células Tumorais Cultivadas , Adulto Jovem
19.
Cells ; 9(4)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340145

RESUMO

Diabetic nephropathy (DN) is considered the main cause of kidney disease in which myofibroblasts lead to renal fibrosis. Macrophages were recently identified as the major source of myofibroblasts in a process known as macrophage-myofibroblast transition (MMT). Adenosine levels increase during DN and in vivo administration of MRS1754, an antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerular fibrosis (glomerulosclerosis). We aimed to investigate the association between A2BAR and MMT in glomerulosclerosis during DN. Kidneys/glomeruli of non-diabetic, diabetic, and MRS1754-treated diabetic (DM+MRS1754) rats were processed for histopathologic, transcriptomic, flow cytometry, and cellular in vitro analyses. Macrophages were used for in vitro cell migration/transmigration assays and MMT studies. In vivo MRS1754 treatment attenuated the clinical and histopathological signs of glomerulosclerosis in DN rats. Transcriptomic analysis demonstrated a decrease in chemokine-chemoattractants/cell-adhesion genes of monocytes/macrophages in DM+MRS1754 glomeruli. The number of intraglomerular infiltrated macrophages and MMT cells increased in diabetic rats. This was reverted by MRS1754 treatment. In vitro cell migration/transmigration decreased in macrophages treated with MRS1754. Human macrophages cultured with adenosine and/or TGF-ß induced MMT, a process which was reduced by MRS1754. We concluded that pharmacologic blockade of A2BAR attenuated some clinical signs of renal dysfunction and glomerulosclerosis, and decreased intraglomerular macrophage infiltration and MMT in DN rats.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Macrófagos/patologia , Monócitos/patologia , Miofibroblastos/patologia , Receptor A2B de Adenosina/metabolismo , Acetamidas/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Biomarcadores/metabolismo , Moléculas de Adesão Celular/metabolismo , Quimiocinas/metabolismo , Fatores Quimiotáticos/farmacologia , Fibrose , Humanos , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Purinas/farmacologia , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(7): 165796, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32289379

RESUMO

Progressive diabetic nephropathy (DN) and loss of renal function correlate with kidney fibrosis. Crosstalk between TGF-ß and adenosinergic signaling contributes to the phenotypic transition of cells and to renal fibrosis in DN models. We evaluated the role of TGF-ß on NT5E gene expression coding for the ecto-5`-nucleotidase CD73, the limiting enzyme in extracellular adenosine production. We showed that high d-glucose may predispose HK-2 cells towards active transcription of the proximal promoter region of the NT5E gene while additional TGF-ß results in full activation. The epigenetic landscape of the NT5E gene promoter was modified by concurrent TGF-ß with occupancy by the p300 co-activator and the phosphorylated forms of the Smad2/3 complex and RNA Pol II. Transcriptional induction at NT5E in response to TGF-ß was earlier compared to the classic responsiveness genes PAI-1 and Fn1. CD73 levels and AMPase activity were concomitantly increased by TGF-ß in HK-2 cells. Interestingly, we found increased CD73 content in urinary extracellular vesicles only in diabetic patients with renal repercussions. Further, CD73-mediated AMPase activity was increased in the urinary sediment of DN patients. We conclude that the NT5E gene is a target of the profibrotic TGF-ß cascade and is a traceable marker of progressive DN.


Assuntos
5'-Nucleotidase/genética , Nefropatias Diabéticas/genética , Fibrose/genética , Fator de Crescimento Transformador beta/genética , Adenosina/biossíntese , Biomarcadores/metabolismo , Linhagem Celular , Nefropatias Diabéticas/patologia , Proteína p300 Associada a E1A/genética , Epigênese Genética/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose/patologia , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica , Humanos , Rim/metabolismo , Rim/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Nucleotidases/genética , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA