Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 612(7940): 442-447, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517713

RESUMO

Hybrid semiconductor-superconductor devices hold great promise for realizing topological quantum computing with Majorana zero modes1-5. However, multiple claims of Majorana detection, based on either tunnelling6-10 or Coulomb blockade (CB) spectroscopy11,12, remain disputed. Here we devise an experimental protocol that allows us to perform both types of measurement on the same hybrid island by adjusting its charging energy via tunable junctions to the normal leads. This method reduces ambiguities of Majorana detections by checking the consistency between CB spectroscopy and zero-bias peaks in non-blockaded transport. Specifically, we observe junction-dependent, even-odd modulated, single-electron CB peaks in InAs/Al hybrid nanowires without concomitant low-bias peaks in tunnelling spectroscopy. We provide a theoretical interpretation of the experimental observations in terms of low-energy, longitudinally confined island states rather than overlapping Majorana modes. Our results highlight the importance of combined measurements on the same device for the identification of topological Majorana zero modes.

2.
Nano Lett ; 20(2): 1141-1147, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31928013

RESUMO

Franckeite is a naturally occurring layered mineral with a structure composed of alternating stacks of SnS2-like and PbS-like layers. Although this superlattice is composed of a sequence of isotropic two-dimensional layers, it exhibits a spontaneous rippling that makes the material structurally anisotropic. We demonstrate that this rippling comes hand in hand with an inhomogeneous in-plane strain profile and anisotropic electrical, vibrational, and optical properties. We argue that this symmetry breakdown results from a spatial modulation of the van der Waals interaction between layers due to the SnS2-like and PbS-like lattices incommensurability.

3.
Phys Rev Lett ; 125(21): 214301, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33275023

RESUMO

Twisted bilayer graphene develops quasiflat bands at specific "magic" interlayer rotation angles through an unconventional mechanism connected to carrier chirality. Quasiflat bands are responsible for a wealth of exotic, correlated-electron phases in the system. In this Letter, we propose a mechanical analog of twisted bilayer graphene made of two vibrating plates patterned with a honeycomb mesh of masses and coupled across a continuum elastic medium. We show that flexural waves in the device exhibit vanishing group velocity and quasiflat bands at magic angles in close correspondence with electrons in graphene models. The strong similarities of spectral structure and spatial eigenmodes in the two systems demonstrate the chiral nature of the mechanical flat bands. We derive analytical expressions that quantitatively connect the mechanical and electronic models, which allow us to predict the parameters required for an experimental realization of our proposal.

4.
Phys Rev Lett ; 123(19): 196601, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765190

RESUMO

Topological phases have recently been realized in bosonic systems. The associated boundary modes between regions of distinct topology have been used to demonstrate robust waveguiding, protected from defects by the topology of the surrounding bulk. A related type of topologically protected state that is not propagating but is bound to a defect has not been demonstrated to date in a bosonic setting. Here we demonstrate numerically and experimentally that an acoustic mode can be topologically bound to a vortex fabricated in a two-dimensional, Kekulé-distorted triangular acoustic lattice. Such lattice realizes an acoustic analog of the Jackiw-Rossi mechanism that topologically binds a bound state in a p-wave superconductor vortex. The acoustic bound state is thus a bosonic analog of a Majorana bound state, where the two valleys replace particle and hole components. We numerically show that it is topologically protected against arbitrary symmetry-preserving local perturbations, and remains pinned to the Dirac frequency of the unperturbed lattice regardless of parameter variations. We demonstrate our prediction experimentally by 3D printing the vortex pattern in a plastic matrix and measuring the spectrum of the acoustic response of the device. Despite viscothermal losses, the measured topological resonance remains robust, with its frequency closely matching our simulations.

5.
Chem Soc Rev ; 46(15): 4387-4399, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28640314

RESUMO

This tutorial review presents an overview of the basic theoretical aspects of two-dimensional (2D) crystals. We revise essential aspects of graphene and the new families of semiconducting 2D materials, like transition metal dichalcogenides or black phosphorus. Minimal theoretical models for various materials are presented. Some of the exciting new possibilities offered by 2D crystals are discussed, such as manipulation and control of quantum degrees of freedom (spin and pseudospin), confinement of excitons, control of the electronic and optical properties with strain engineering, or unconventional superconducting phases.

6.
Phys Rev Lett ; 119(10): 107201, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28949176

RESUMO

Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.

7.
Nano Lett ; 16(5): 2931-7, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27042865

RESUMO

Controlling the bandgap through local-strain engineering is an exciting avenue for tailoring optoelectronic materials. Two-dimensional crystals are particularly suited for this purpose because they can withstand unprecedented nonhomogeneous deformations before rupture; one can literally bend them and fold them up almost like a piece of paper. Here, we study multilayer black phosphorus sheets subjected to periodic stress to modulate their optoelectronic properties. We find a remarkable shift of the optical absorption band-edge of up to ∼0.7 eV between the regions under tensile and compressive stress, greatly exceeding the strain tunability reported for transition metal dichalcogenides. This observation is supported by theoretical models that also predict that this periodic stress modulation can yield to quantum confinement of carriers at low temperatures. The possibility of generating large strain-induced variations in the local density of charge carriers opens the door for a variety of applications including photovoltaics, quantum optics, and two-dimensional optoelectronic devices.

8.
Nat Mater ; 13(8): 786-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24776537

RESUMO

The crystal structure of a material plays an important role in determining its electronic properties. Changing from one crystal structure to another involves a phase transition that is usually controlled by a state variable such as temperature or pressure. In the case of trilayer graphene, there are two common stacking configurations (Bernal and rhombohedral) that exhibit very different electronic properties. In graphene flakes with both stacking configurations, the region between them consists of a localized strain soliton where the carbon atoms of one graphene layer shift by the carbon-carbon bond distance. Here we show the ability to move this strain soliton with a perpendicular electric field and hence control the stacking configuration of trilayer graphene with only an external voltage. Moreover, we find that the free-energy difference between the two stacking configurations scales quadratically with electric field, and thus rhombohedral stacking is favoured as the electric field increases. This ability to control the stacking order in graphene opens the way to new devices that combine structural and electrical properties.

9.
Phys Rev Lett ; 112(13): 137001, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24745449

RESUMO

We show that Josephson junctions made of multiband semiconductors with strong spin-orbit coupling carry a critical supercurrent Ic that contains information about the nontrivial topology of the system. In particular, we find that the emergence and annihilation of Majorana bound states in the junction is reflected in strong even-odd effects in Ic at small junction transparency. This effect allows for a mapping between Ic and the topological phase diagram of the junction, thus providing a dc measurement of its topology.

10.
Nat Commun ; 15(1): 856, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287003

RESUMO

Bilayer graphene encapsulated in tungsten diselenide can host a weak topological phase with pairs of helical edge states. The electrical tunability of this phase makes it an ideal platform to investigate unique topological effects at zero magnetic field, such as topological superconductivity. Here we couple the helical edges of such a heterostructure to a superconductor. The inversion of the bulk gap accompanied by helical states near zero displacement field leads to the suppression of the critical current in a Josephson geometry. Using superconducting quantum interferometry we observe an even-odd effect in the Fraunhofer interference pattern within the inverted gap phase. We show theoretically that this effect is a direct consequence of the emergence of helical modes that connect the two edges of the sample. The absence of such an effect at high displacement field, as well as in bare bilayer graphene junctions, supports this interpretation and demonstrates the topological nature of the inverted gap.

11.
Phys Rev Lett ; 108(25): 257001, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-23004641

RESUMO

It has been predicted that superconducting junctions made with topological nanowires hosting Majorana bound states (MBS) exhibit an anomalous 4π-periodic Josephson effect. Finding an experimental setup with these unconventional properties poses, however, a serious challenge: for finite-length wires, the equilibrium supercurrents are always 2π periodic as anticrossings of states with the same fermionic parity are possible. We show, however, that the anomaly survives in the transient regime of the ac Josephson effect. Transients are, moreover, protected against decay by quasiparticle poisoning as a consequence of the quantum Zeno effect, which fixes the parity of Majorana qubits. The resulting long-lived ac Josephson transients may be effectively used to detect MBS.

12.
Science ; 373(6550): 82-88, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210881

RESUMO

A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks-features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity.

13.
Adv Mater ; 31(51): e1904386, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31682285

RESUMO

The discovery of topologically nontrivial electronic systems has opened a new age in condensed matter research. From topological insulators to topological superconductors and Weyl semimetals, it is now understood that some of the most remarkable and robust phases in electronic systems (e.g., quantum Hall or anomalous quantum Hall) are the result of topological protection. These powerful ideas have recently begun to be explored also in bosonic systems. Topologically protected acoustic, mechanical, and optical edge states have been demonstrated in a number of systems that recreate the requisite topological conditions. Such states that propagate without backscattering could find important applications in communications and energy technologies. Here, a topologically bound mechanical state, a different class of nonpropagating protected state that cannot be destroyed by local perturbations, is demonstrated. It is in particular a mechanical analogue of the well-known Majorana bound states (MBSs) of electronic topological superconductor systems. The topological binding is implemented by creating a Kekulé distortion vortex on a 2D mechanical honeycomb superlattice that can be mapped to a magnetic flux vortex in a topological superconductor.

14.
Sci Rep ; 6: 21427, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26865011

RESUMO

Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of 'exceptional points' (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity.

15.
Nat Commun ; 7: 13168, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762272

RESUMO

Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip. For the special case of aligned or nearly-aligned graphene on boron nitride, the graphene lattice can stretch and compress locally to compensate for the slight lattice mismatch between the two materials. We find that modifying the interlayer separation directly tunes the lattice strain and induces commensurate stacking underneath the tip. Our results motivate future studies tailoring the electronic properties of van der Waals heterostructures by controlling the interlayer separation of the entire device using hydrostatic pressure.

16.
Phys Rev Lett ; 97(7): 076803, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-17026261

RESUMO

We study spin-orbit mediated relaxation and dephasing of electron spins in quantum dots. We show that higher order contributions provide a relaxation mechanism that dominates for low magnetic fields and is of geometrical origin. In the low-field limit relaxation is dominated by coupling to electron-hole excitations and possibly 1/f noise rather than phonons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA