Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Med Genet A ; 191(11): 2749-2756, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691301

RESUMO

3q29 deletion syndrome (3q29del) is a rare genomic disorder caused by a 1.6 Mb deletion (hg19, chr3:195725000-197350000). 3q29del is associated with neurodevelopmental and psychiatric phenotypes, including an astonishing >40-fold increased risk for schizophrenia, but medical phenotypes are less well-described. We used the online 3q29 registry of 206 individuals (3q29deletion.org) to recruit 57 individuals with 3q29del (56.14% male) and requested information about musculoskeletal phenotypes with a custom questionnaire. 85.96% of participants with 3q29del reported at least one musculoskeletal phenotype. Congenital anomalies were most common (70.18%), with pes planus (40.35%), pectus excavatum (22.81%), and pectus carinatum (5.26%) significantly elevated relative to the pediatric general population. 49.12% of participants reported fatigue after 30 min or less of activity. Bone fractures (8.77%) were significantly elevated relative to the pediatric general population. Participants commonly report receiving medical care for musculoskeletal complaints (71.93%), indicating that these phenotypes impact quality of life for individuals with 3q29del. This is the most comprehensive description of musculoskeletal phenotypes in 3q29del to date, suggests ideas for clinical evaluation, and expands our understanding of the phenotypic spectrum of this syndrome.


Assuntos
Deficiências do Desenvolvimento , Deficiência Intelectual , Humanos , Criança , Masculino , Feminino , Deficiências do Desenvolvimento/genética , Deleção Cromossômica , Qualidade de Vida , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Deficiência Intelectual/psicologia , Fenótipo , Síndrome
3.
Genet Med ; 23(5): 872-880, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33564151

RESUMO

PURPOSE: To understand the consequences of the 3q29 deletion on medical, neurodevelopmental, psychiatric, brain structural, and neurological sequalae by systematic evaluation of affected individuals. To develop evidence-based recommendations using these data for effective clinical care. METHODS: Thirty-two individuals with the 3q29 deletion were evaluated using a defined phenotyping protocol and standardized data collection instruments. RESULTS: Medical manifestations were varied and reported across nearly every organ system. The most severe manifestations were congenital heart defects (25%) and the most common were gastrointestinal symptoms (81%). Physical examination revealed a high proportion of musculoskeletal findings (81%). Neurodevelopmental phenotypes represent a significant burden and include intellectual disability (34%), autism spectrum disorder (38%), executive function deficits (46%), and graphomotor weakness (78%). Psychiatric illness manifests across the lifespan with psychosis prodrome (15%), psychosis (20%), anxiety disorders (40%), and attention deficit-hyperactivity disorder (ADHD) (63%). Neuroimaging revealed structural anomalies of the posterior fossa, but on neurological exam study subjects displayed only mild or moderate motor vulnerabilities. CONCLUSION: By direct evaluation of 3q29 deletion study subjects, we document common features of the syndrome, including a high burden of neurodevelopmental and neuropsychiatric phenotypes. Evidence-based recommendations for evaluation, referral, and management are provided to help guide clinicians in the care of 3q29 deletion patients.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos Psicóticos , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Criança , Deleção Cromossômica , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética
4.
Am J Med Genet A ; 185(7): 2094-2101, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33938623

RESUMO

3q29 deletion syndrome (3q29del) is a recurrent deletion syndrome associated with neuropsychiatric disorders and congenital anomalies. Dysmorphic facial features have been described but not systematically characterized. This study aims to detail the 3q29del craniofacial phenotype and use a machine learning approach to categorize individuals with 3q29del through analysis of 2D photos. Detailed dysmorphology exam and 2D facial photos were ascertained from 31 individuals with 3q29del. Photos were used to train the next-generation phenotyping algorithm DeepGestalt (Face2Gene by FDNA, Inc, Boston, MA) to distinguish 3q29del cases from controls and all other recognized syndromes. Area under the curve of receiver operating characteristic curves (AUC-ROC) was used to determine the capacity of Face2Gene to identify 3q29del cases against controls. In this cohort, the most common observed craniofacial features were prominent forehead (48.4%), prominent nose tip (35.5%), and thin upper lip vermillion (25.8%). The FDNA technology showed an ability to distinguish cases from controls with an AUC-ROC value of 0.873 (p = 0.006) and led to the inclusion of 3q29del as one of the supported syndromes. This study found a recognizable facial pattern in 3q29del, as observed by trained clinical geneticists and next-generation phenotyping technology. These results expand the potential application of automated technology such as FDNA in identifying rare genetic syndromes, even when facial dysmorphology is subtle.


Assuntos
Variação Biológica da População/genética , Anormalidades Craniofaciais/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Adolescente , Adulto , Algoritmos , Criança , Pré-Escolar , Cromossomos Humanos Par 3/genética , Anormalidades Craniofaciais/patologia , Face , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Fenótipo , Deleção de Sequência/genética , Adulto Jovem
5.
Am J Med Genet A ; 185(12): 3675-3682, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272929

RESUMO

Pathogenic variation in the X-linked gene FLNA causes a wide range of human developmental phenotypes. Loss-of-function is usually male embryonic-lethal, and most commonly results in a neuronal migration disorder in affected females. Gain-of-function variants cause a spectrum of skeletal dysplasias that present with variable additional, often distinctive, soft-tissue anomalies in males and females. Here we present two, unrelated, male individuals with novel, intronic variants in FLNA that are predicted to be pathogenic. Their phenotypes are reminiscent of the gain-of-function spectrum without the skeletal manifestations. Most strikingly, they manifest urethral anomalies, cardiac malformations, and keloid scarring, all commonly encountered features of frontometaphyseal dysplasia. Both variants prevent inclusion of exon 40 into the FLNA transcript, predicting the in-frame deletion of 42 amino acids, however the abundance of FLNA protein was equivalent to that observed in healthy individuals. Loss of these 42 amino acids removes sites that mediate key FLNA functions, including binding of some ligands and phosphorylation. This phenotype further expands the spectrum of the FLNA filaminopathies.


Assuntos
Filaminas/genética , Testa/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/genética , Predisposição Genética para Doença , Osteocondrodisplasias/genética , Criança , Cicatriz/complicações , Cicatriz/genética , Cicatriz/fisiopatologia , Éxons/genética , Testa/fisiopatologia , Genes Ligados ao Cromossomo X , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Variação Genética/genética , Humanos , Lactente , Queloide/complicações , Queloide/genética , Queloide/fisiopatologia , Mutação com Perda de Função/genética , Masculino , Mutação/genética , Osteocondrodisplasias/fisiopatologia , Linhagem , Fenótipo , Fosforilação/genética , Uretra/anormalidades , Uretra/fisiopatologia
6.
BMC Psychiatry ; 18(1): 183, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884173

RESUMO

BACKGROUND: 3q29 deletion syndrome is caused by a recurrent hemizygous 1.6 Mb deletion on the long arm of chromosome 3. The syndrome is rare (1 in 30,000 individuals) and is associated with mild to moderate intellectual disability, increased risk for autism and anxiety, and a 40-fold increased risk for schizophrenia, along with a host of physical manifestations. However, the disorder is poorly characterized, the range of manifestations is not well described, and the underlying molecular mechanism is not understood. We designed the Emory 3q29 Project to document the range of neurodevelopmental and psychiatric manifestations associated with 3q29 deletion syndrome. We will also create a biobank of samples from our 3q29 deletion carriers for mechanistic studies, which will be a publicly-available resource for qualified investigators. The ultimate goals of our study are three-fold: first, to improve management and treatment of 3q29 deletion syndrome. Second, to uncover the molecular mechanism of the disorder. Third, to enable cross-disorder comparison with other rare genetic syndromes associated with neuropsychiatric phenotypes. METHODS: We will ascertain study subjects, age 6 and older, from our existing registry ( 3q29deletion.org ). Participants and their families will travel to Atlanta, GA for phenotypic assessments, with particular emphasis on evaluation of anxiety, cognitive ability, autism symptomatology, and risk for psychosis via prodromal symptoms and syndromes. Evaluations will be performed using standardized instruments. Structural, diffusion, and resting-state functional MRI data will be collected from eligible study participants. We will also collect blood from the 3q29 deletion carrier and participating family members, to be banked at the NIMH Repository and Genomics Resource (NRGR). DISCUSSION: The study of 3q29 deletion has the potential to transform our understanding of complex disease. Study of individuals with the deletion may provide insights into long term care and management of the disorder. Our project describes the protocol for a prospective study of the behavioral and clinical phenotype associated with 3q29 deletion syndrome. The paradigm described here could easily be adapted to study additional CNV or single gene disorders with high risk for neuropsychiatric phenotypes, and/or transferred to other study sites, providing a means for data harmonization and cross-disorder analysis.


Assuntos
Transtorno Autístico , Deleção Cromossômica , Transtornos Cromossômicos , Cromossomos Humanos Par 3 , Deficiência Intelectual , Esquizofrenia , Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Transtorno Autístico/psicologia , Criança , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/psicologia , Cognição , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/psicologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/psicologia , Masculino , Fenótipo , Estudos Prospectivos , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Esquizofrenia/terapia , Psicologia do Esquizofrênico
8.
Ann Transl Med ; 9(15): 1274, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532411

RESUMO

BACKGROUND: Ceroid lipofuscinosis type 8 belongs to a heterogenous group of vision and life-threatening neurodegenerative diseases, neuronal ceroid lipofuscinosis (NCL). Effective therapy is limited to a single drug for treatment of ceroid lipofuscinosis type 2, necessitating animal disease models to facilitate further therapeutic development. Murine models are advantageous for therapeutic development due to easy genetic manipulation and rapid breeding, however appropriate genetic models need to be identified and characterized before being used for therapy testing. To date, murine models of ocular disease associated with ceroid lipofuscinosis type 8 have only been characterized in motor neuron degeneration mice. METHODS: Cln8-/- mice were produced by CRISPR/Cas9 genome editing through the International Mouse Phenotyping Consortium. Ophthalmic examination, optical coherence tomography, electroretinography, and ocular histology was performed on Cln8-/- mice and controls at 16 weeks of age. Quantification of all retinal layers, retinal pigmented epithelium, and the choriocapillaris was performed using images acquired with ocular coherence tomography and planimetry of histologic sections. Necropsy was performed to investigate concurrent systemic abnormalities. Clinical correlation with human patients with CLN8-associated retinopathy is provided. RESULTS: Retinal degeneration characterized by retinal pigment epithelium mottling, scattered drusen, and retinal vascular attenuation was noted in all Cln8-/- mice. Loss of inner and outer photoreceptor segment demarcation was noted on optical coherence tomography, with significant thinning of the whole retina (P=1e-9), outer nuclear layer (P=1e-9), and combined photoreceptor segments (P=1e-9). A global reduction in scotopic and photopic electroretinographic waveforms was noted in all Cln8-/- mice. Slight thickening of the inner plexiform layer (P=0.02) and inner nuclear layer (P=0.004), with significant thinning of the whole retina (P=0.03), outer nuclear layer (P=0.01), and outer photoreceptor segments (P=0.001) was appreciated on histologic sections. Scattered lipid vacuoles were noted in splenic red pulp of all Cln8-/- mice, though no gross systemic abnormalities were detected on necropsy. Retinal findings are consistent with those seen in patients with ceroid lipofuscinosis type 8. CONCLUSIONS: This study provides detailed clinical characterization of retinopathy in adult Cln8-/- mice. Findings suggest that Cln8-/- mice may provide a useful murine model for development of novel therapeutics needed for treating ocular disease in patients with ceroid lipofuscinosis type 8.

9.
Mol Genet Metab Rep ; 27: 100735, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33732618

RESUMO

Arginase deficiency is a rare inborn error of metabolism that interrupts the final step of the urea cycle. Untreated individuals often present with episodic hyperammonemia, developmental delay, cognitive impairment, and spasticity in early childhood. The newborn screening (NBS) algorithms for arginase deficiency vary between individual states in the US but often include hyperargininemia and elevated arginine to ornithine (Arg/Orn) ratio. Here, we report 14 arginase deficiency cases, including two patients with positive NBS for hyperargininemia in whom the diagnosis of arginase deficiency was delayed owing to normal or near normal plasma arginine levels on follow-up testing. To improve the detection capability for arginase deficiency, we evaluated plasma Arg/Orn ratio as a secondary diagnostic marker in positive NBS cases for hyperargininemia. We found that plasma Arg/Orn ratio combined with plasma arginine was a better marker than plasma arginine alone to differentiate patients with arginase deficiency from unaffected newborns. In fact, elevated plasma arginine in combination with an Arg/Orn ratio of ≥1.4 identified all 14 arginase deficiency cases. In addition, we examined the impact of age on plasma arginine and ornithine levels. Plasma arginine increased 0.94 µmol/L/day while ornithine was essentially unchanged in the first 31 days of life, which resulted in a similar increasing trend for the Arg/Orn ratio (0.01/day). This study demonstrated that plasma Arg/Orn ratio as a secondary diagnostic marker improved the detection capability for arginase deficiency in newborns with hyperargininemia, which will allow timely detection of arginase deficiency and hence initiation of treatment before developing symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA