Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948752

RESUMO

The liver is a remarkable organ that can regenerate in response to injury. Depending on the extent of injury, the liver can undergo compensatory hyperplasia or fibrosis. Despite decades of research, the molecular mechanisms underlying these processes are poorly understood. Here, we developed a new model to study liver regeneration based on cryoinjury. To visualise liver regeneration at cellular resolution, we adapted the CUBIC tissue-clearing approach. Hepatic cryoinjury induced a localised necrotic and apoptotic lesion characterised by inflammation and infiltration of innate immune cells. Following this initial phase, we observed fibrosis, which resolved as regeneration re-established homeostasis in 30 days. Importantly, this approach enables the comparison of healthy and injured parenchyma with an individual animal, providing unique advantages to previous models. In summary, the hepatic cryoinjury model provides a fast and reproducible method for studying the cellular and molecular pathways underpinning fibrosis and liver regeneration.

2.
Vaccines (Basel) ; 8(1)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131431

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic progressive disease characterized by insulin resistance and insufficient insulin secretion to maintain normoglycemia. The majority of T2DM patients bear amyloid deposits mainly composed of islet amyloid polypeptide (IAPP) in their pancreatic islets. These-originally ß-cell secretory products-extracellular aggregates are cytotoxic for insulin-producing ß-cells and are associated with ß-cell loss and inflammation in T2DM advanced stages. Due to the absence of T2DM preventive medicaments and the presence of only symptomatic drugs acting towards increasing hormone secretion and action, we aimed at establishing a novel disease-modifying therapy targeting the cytotoxic IAPP deposits in order to prevent the development of T2DM. We generated a vaccine based on virus-like particles (VLPs), devoid of genomic material, coupled to IAPP peptides inducing specific antibodies against aggregated, but not monomeric IAPP. Using a mouse model of islet amyloidosis, we demonstrate in vivo that our vaccine induced a potent antibody response against aggregated, but not soluble IAPP, strikingly preventing IAPP depositions, delaying onset of hyperglycemia and the induction of the associated pro-inflammatory cytokine Interleukin 1ß (IL-1ß). We offer the first cost-effective and safe disease-modifying approach targeting islet dysfunction in T2DM, preventing pathogenic aggregates without disturbing physiological IAPP function.

3.
PLoS One ; 15(2): e0228333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32023296

RESUMO

In order to study the adaptation scope of the fish respiratory organ and the O2 metabolism due to endurance training, we subjected adult zebrafish (Danio rerio) to endurance exercise for 5 weeks. After the training period, the swimmer group showed a significant increase in swimming performance, body weight and length. In scanning electron microscopy of the gills, the average length of centrally located primary filaments appeared significantly longer in the swimmer than in the non-trained control group (+6.1%, 1639 µm vs. 1545 µm, p = 0.00043) and the average number of secondary filaments increased significantly (+7.7%, 49.27 vs. 45.73, p = 9e-09). Micro-computed tomography indicated a significant increase in the gill volume (p = 0.048) by 11.8% from 0.490 mm3 to 0.549 mm3. The space-filling complexity dropped significantly (p = 0.0088) by 8.2% from 38.8% to 35.9%., i.e. making the gills of the swimmers less compact. Respirometry after 5 weeks showed a significantly higher oxygen consumption (+30.4%, p = 0.0081) of trained fish during exercise compared to controls. Scanning electron microscopy revealed different stages of new secondary filament budding, which happened at the tip of the primary lamellae. Using BrdU we could confirm that the growth of the secondary filaments took place mainly in the distal half and the tip and for primary filaments mainly at the tip. We conclude that the zebrafish respiratory organ-unlike the mammalian lung-has a high plasticity, and after endurance training increases its volume and changes its structure in order to facilitate O2 uptake.


Assuntos
Adaptação Fisiológica , Brânquias/fisiologia , Condicionamento Físico Animal , Peixe-Zebra/fisiologia , Animais , Comportamento Animal , Tamanho Corporal , Feminino , Brânquias/diagnóstico por imagem , Brânquias/patologia , Masculino , Microscopia Eletrônica de Varredura , Consumo de Oxigênio , Microtomografia por Raio-X
4.
Cell Rep ; 29(4): 1041-1054.e5, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644901

RESUMO

During heart regeneration in the zebrafish, fibrotic tissue is replaced by newly formed cardiomyocytes derived from preexisting ones. It is unclear whether the heart is composed of several cardiomyocyte populations bearing different capacity to replace lost myocardium. Here, using sox10 genetic fate mapping, we identify a subset of preexistent cardiomyocytes in the adult zebrafish heart with a distinct gene expression profile that expanded after cryoinjury. Genetic ablation of sox10+ cardiomyocytes impairs cardiac regeneration, revealing that these cells play a role in heart regeneration.


Assuntos
Miócitos Cardíacos/metabolismo , Regeneração , Fatores de Transcrição SOXE/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Coração/fisiologia , Miócitos Cardíacos/fisiologia , Fatores de Transcrição SOXE/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA