Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 28(2): 180-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25476994

RESUMO

One of the key challenges in the study of health-related aerosols is predicting and monitoring sites of particle deposition in the respiratory tract. The potential health risks of ambient exposure to environmental or workplace aerosols and the beneficial effects of medical aerosols are strongly influenced by the site of aerosol deposition along the respiratory tract. Nuclear medicine is the only current modality that combines quantification and regional localization of aerosol deposition, and this technique remains limited by its spatial and temporal resolutions and by patient exposure to radiation. Recent work in MRI has shed light on techniques to quantify micro-sized magnetic particles in living bodies by the measurement of associated static magnetic field variations. With regard to lung MRI, hyperpolarized helium-3 may be used as a tracer gas to compensate for the lack of MR signal in the airways, so as to allow assessment of pulmonary function and morphology. The extrathoracic region of the human respiratory system plays a critical role in determining aerosol deposition patterns, as it acts as a filter upstream from the lungs. In the present work, aerosol deposition in a mouth-throat phantom was measured using helium-3 MRI and compared with single-photon emission computed tomography. By providing high sensitivity with high spatial and temporal resolutions, phase-contrast helium-3 MRI offers new insights for the study of particle transport and deposition.


Assuntos
Aerossóis/administração & dosagem , Meios de Contraste , Hélio , Imageamento por Ressonância Magnética/métodos , Sistema Respiratório/anatomia & histologia , Humanos , Imageamento Tridimensional , Ferro/metabolismo , Campos Magnéticos , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
2.
J Biomech ; 44(6): 1137-43, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21316683

RESUMO

The regional distribution of inhaled gas within the lung is affected in part by normal variations in airway geometry or by obstructions resulting from disease. In the present work, the effects of heterogeneous airway obstructions on the distribution of air and helium-oxygen were examined using an in vitro model, the two compartments of a dual adult test lung. Breathing helium-oxygen resulted in a consistently more uniform distribution, with the gas volume delivered to a severely obstructed compartment increased by almost 80%. An engineering approach to pipe flow was used to analyze the test lung and was extrapolated to a human lung model to show that the in vitro experimental parameters are relevant to the observed in vivo conditions. The engineering analysis also showed that helium-oxygen can decrease the relative weight of the flow resistance due to obstructions if they are inertial in nature (i.e., density dependent) due to either turbulence or laminar convective losses.


Assuntos
Obstrução das Vias Respiratórias/fisiopatologia , Hélio , Pulmão/fisiopatologia , Modelos Biológicos , Oxigênio , Ventilação Pulmonar , Adulto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA