Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810253

RESUMO

Short-chain fatty acids, including butyrate, have multiple metabolic benefits in individuals who are lean but not in individuals with metabolic syndrome, with the underlying mechanisms still being unclear. We aimed to investigate the role of gut microbiota in the induction of metabolic benefits of dietary butyrate. We performed antibiotic-induced microbiota depletion of the gut and fecal microbiota transplantation (FMT) in APOE*3-Leiden.CETP mice, a well-established translational model for developing human-like metabolic syndrome, and revealed that dietary butyrate reduced appetite and ameliorated high-fat diet-induced (HFD-induced) weight gain dependent on the presence of gut microbiota. FMT from butyrate-treated lean donor mice, but not butyrate-treated obese donor mice, into gut microbiota-depleted recipient mice reduced food intake, attenuated HFD-induced weight gain, and improved insulin resistance. 16S rRNA and metagenomic sequencing on cecal bacterial DNA of recipient mice implied that these effects were accompanied by the selective proliferation of Lachnospiraceae bacterium 28-4 in the gut as induced by butyrate. Collectively, our findings reveal a crucial role of gut microbiota in the beneficial metabolic effects of dietary butyrate as strongly associated with the abundance of Lachnospiraceae bacterium 28-4.


Assuntos
Butiratos , Síndrome Metabólica , Humanos , Animais , Camundongos , Butiratos/efeitos adversos , Obesidade/metabolismo , RNA Ribossômico 16S , Aumento de Peso , Proliferação de Células
2.
Artigo em Inglês | MEDLINE | ID: mdl-23566553

RESUMO

In the last decade, outbreaks of nosocomial Clostridium difficile infections (CDI) occurred worldwide. A new emerging type, PCR-ribotype 027, was the associated pathogen. Antimicrobial susceptibility profiles of this type were extensively investigated and used to partly explain its spread. In Europe, the incidence of C. difficile PCR-ribotype 078 recently increased in humans and piglets. Using recommendations of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical and Laboratory Standards Institute (CLSI) we studied the antimicrobial susceptibility to eight antimicrobials, mechanisms of resistance and the relation with previously prescribed antimicrobials in human (n=49) and porcine (n=50) type 078 isolates. Human and porcine type 078 isolates showed similar antimicrobial susceptibility patterns for the antimicrobials tested. In total, 37% of the isolates were resistant to four or more antimicrobial agents. The majority of the human and porcine isolates were susceptible to amoxicillin (100%), tetracycline (100%) and clindamycin (96%) and resistant to ciprofloxacin (96%). More variation was found for resistance patterns to erythromycin (76% in human and 59% in porcine isolates), imipenem (29% in human and 50% in porcine isolates) and moxifloxacin (16% for both human and porcine isolates). MIC values of cefuroxim were high (MICs >256 mg/L) in 96% of the isolates. Resistance to moxifloxacin and clindamycin was associated with a gyr(A) mutation and the presence of the erm(B) gene, respectively. A large proportion (96%) of the erythromycin resistant isolates did not carry the erm(B) gene. The use of ciprofloxacin (humans) and enrofloxacin (pigs) was significantly associated with isolation of moxifloxacin resistant isolates. Increased fluoroquinolone use could have contributed to the spread of C. difficile type 078.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA