Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Acta Oncol ; 62(10): 1194-1200, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37589124

RESUMO

BACKGROUND: Knowledge-based planning (KBP) is a method for automated radiotherapy treatment planning where appropriate optimization objectives for new patients are predicted based on a library of training plans. KBP can save time and improve organ at-risk sparing and inter-patient consistency compared to manual planning, but its performance depends on the quality of the training plans. We used another system for automated planning, which generates multi-criteria optimized (MCO) plans based on a wish list, to create training plans for the KBP model, to allow seamless integration of knowledge from a new system into clinical routine. Model performance was compared for KBP models trained with manually created and automatic MCO treatment plans. MATERIAL AND METHODS: Two RapidPlan models with the same 30 locally advanced non-small cell lung cancer patients included were created, one containing manually created clinical plans (RP_CLIN) and one containing fully automatic multi-criteria optimized plans (RP_MCO). For 15 validation patients, model performance was compared in terms of dose-volume parameters and normal tissue complication probabilities, and an oncologist performed a blind comparison of the clinical (CLIN), RP_CLIN, and RP_MCO plans. RESULTS: The heart and esophagus doses were lower for RP_MCO compared to RP_CLIN, resulting in an average reduction in the risk of 2-year mortality by 0.9 percentage points and the risk of acute esophageal toxicity by 1.6 percentage points with RP_MCO. The oncologist preferred the RP_MCO plan for 8 patients and the CLIN plan for 7 patients, while the RP_CLIN plan was not preferred for any patients. CONCLUSION: RP_MCO improved OAR sparing compared to RP_CLIN and was selected for implementation in the clinic. Training a KBP model with clinical plans may lead to suboptimal output plans, and making an extra effort to optimize the library plans in the KBP model creation phase can improve the plan quality for many future patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco
2.
Phys Imaging Radiat Oncol ; 30: 100590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38827886

RESUMO

Background and purpose: For locally advanced non-small cell lung cancer (LA-NSCLC), intensity-modulated proton therapy (IMPT) can reduce organ at risk (OAR) doses compared to intensity-modulated radiotherapy (IMRT). Deep inspiration breath hold (DIBH) reduces OAR doses compared to free breathing (FB) in IMRT. In IMPT, differences in dose distributions and robustness between DIBH and FB are unclear. In this study, we compare DIBH to FB in IMPT, and IMPT to IMRT. Materials and methods: Fortyone LA-NSCLC patients were prospectively included. 4D computed tomography images (4DCTs) and DIBH CTs were acquired for treatment planning and during weeks 1 and 3 of treatment. A new system for automated robust planning was developed and used to generate a FB and a DIBH IMPT plan for each patient. Plans were compared in terms of dose-volume parameters and normal tissue complication probabilities (NTCPs). Dose recalculations on repeat CTs were used to compare inter-fraction plan robustness. Results: In IMPT, DIBH reduced median lungs Dmean from 9.3 Gy(RBE) to 8.0 Gy(RBE) compared to FB, and radiation pneumonitis NTCP from 10.9 % to 9.4 % (p < 0.001). Inter-fraction plan robustness for DIBH and FB was similar. Median NTCPs for radiation pneumonitis and mortality were around 9 percentage points lower with IMPT than IMRT (p < 0.001). These differences were much larger than between FB and DIBH within each modality. Conclusion: DIBH IMPT resulted in reduced lung dose and radiation pneumonitis NTCP compared to FB IMPT. Inter-fraction robustness was comparable. OAR doses were far lower in IMPT than IMRT.

3.
Cancers (Basel) ; 14(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326516

RESUMO

Enhancing treatment of locally advanced non-small cell lung cancer (LA-NSCLC) by using pencil beam scanning proton therapy (PBS-PT) is attractive, but little knowledge exists on the effects of uncertainties occurring between the planning (Plan) and the start of treatment (Start). In this prospective simulation study, we investigated the clinical potential for PBS-PT under the influence of such uncertainties. Imaging with 4DCT at Plan and Start was carried out for 15 patients that received state-of-the-art intensity-modulated radiotherapy (IMRT). Three PBS-PT plans were created per patient: 3D robust single-field uniform dose (SFUD), 3D robust intensity-modulated proton therapy (IMPT), and 4D robust IMPT (4DIMPT). These were exposed to setup and range uncertainties and breathing motion at Plan, and changes in breathing motion and anatomy at Start. Target coverage and dose-volume parameters relevant for toxicity were compared. The organ at risk sparing at Plan was greatest with IMPT, followed by 4DIMPT, SFUD and IMRT, and persisted at Start. All plans met the preset criteria for target robustness at Plan. At Start, three patients had a lack of CTV coverage with PBS-PT. In conclusion, the clinical potential for heart and lung toxicity reduction with PBS-PT was substantial and persistent. Altered breathing patterns between Plan and Start jeopardized target coverage for all PBS-PT techniques.

4.
Front Oncol ; 12: 966134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110942

RESUMO

Background: State-of-the-art radiotherapy of locally advanced non-small cell lung cancer (LA-NSCLC) is performed with intensity-modulation during free breathing (FB). Previous studies have found encouraging geometric reproducibility and patient compliance of deep inspiration breath hold (DIBH) radiotherapy for LA-NSCLC patients. However, dosimetric comparisons of DIBH with FB are sparse, and DIBH is not routinely used for this patient group. The objective of this simulation study was therefore to compare DIBH and FB in a prospective cohort of LA-NSCLC patients treated with intensity-modulated radiotherapy (IMRT). Methods: For 38 LA-NSCLC patients, 4DCTs and DIBH CTs were acquired for treatment planning and during the first and third week of radiotherapy treatment. Using automated planning, one FB and one DIBH IMRT plan were generated for each patient. FB and DIBH was compared in terms of dosimetric parameters and NTCP. The treatment plans were recalculated on the repeat CTs to evaluate robustness. Correlations between ΔNTCPs and patient characteristics that could potentially predict the benefit of DIBH were explored. Results: DIBH reduced the median Dmean to the lungs and heart by 1.4 Gy and 1.1 Gy, respectively. This translated into reductions in NTCP for radiation pneumonitis grade ≥2 from 20.3% to 18.3%, and for 2-year mortality from 51.4% to 50.3%. The organ at risk sparing with DIBH remained significant in week 1 and week 3 of treatment, and the robustness of the target coverage was similar for FB and DIBH. While the risk of radiation pneumonitis was consistently reduced with DIBH regardless of patient characteristics, the ability to reduce the risk of 2-year mortality was evident among patients with upper and left lower lobe tumors but not right lower lobe tumors. Conclusion: Compared to FB, DIBH allowed for smaller target volumes and similar target coverage. DIBH reduced the lung and heart dose, as well as the risk of radiation pneumonitis and 2-year mortality, for 92% and 74% of LA-NSCLC patients, respectively. However, the advantages varied considerably between patients, and the ability to reduce the risk of 2-year mortality was dependent on tumor location. Evaluation of repeat CTs showed similar robustness of the dose distributions with each technique.

5.
Cancers (Basel) ; 13(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34830838

RESUMO

In this study, the novel iCE radiotherapy treatment planning system (TPS) for automated multi-criterial planning with integrated beam angle optimization (BAO) was developed, and applied to optimize organ at risk (OAR) sparing and systematically investigate the impact of beam angles on radiotherapy dose in locally advanced non-small cell lung cancer (LA-NSCLC). iCE consists of an in-house, sophisticated multi-criterial optimizer with integrated BAO, coupled to a broadly used commercial TPS. The in-house optimizer performs fluence map optimization to automatically generate an intensity-modulated radiotherapy (IMRT) plan with optimal beam angles for each patient. The obtained angles and dose-volume histograms are then used to automatically generate the final deliverable plan with the commercial TPS. For the majority of 26 LA-NSCLC patients, iCE achieved improved heart and esophagus sparing compared to the manually created clinical plans, with significant reductions in the median heart Dmean (8.1 vs. 9.0 Gy, p = 0.02) and esophagus Dmean (18.5 vs. 20.3 Gy, p = 0.02), and reductions of up to 6.7 Gy and 5.8 Gy for individual patients. iCE was superior to automated planning using manually selected beam angles. Differences in the OAR doses of iCE plans with 6 beams compared to 4 and 8 beams were statistically significant overall, but highly patient-specific. In conclusion, automated planning with integrated BAO can further enhance and individualize radiotherapy for LA-NSCLC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA