Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(11): 112501, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35363028

RESUMO

Using the fusion-evaporation reaction ^{96}Ru(^{58}Ni,p4n)^{149}Lu and the MARA vacuum-mode recoil separator, a new proton-emitting isotope ^{149}Lu has been identified. The measured decay Q value of 1920(20) keV is the highest measured for a ground-state proton decay, and it naturally leads to the shortest directly measured half-life of 450_{-100}^{+170} ns for a ground-state proton emitter. The decay rate is consistent with l_{p}=5 emission, suggesting a dominant πh_{11/2} component for the wave function of the proton-emitting state. Through nonadiabatic quasiparticle calculations it was concluded that ^{149}Lu is the most oblate deformed proton emitter observed to date.

2.
Phys Rev Lett ; 121(2): 022502, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085703

RESUMO

Lifetimes of the first excited 2^{+} and 4^{+} states in the extremely neutron-deficient nuclide ^{172}Pt have been measured for the first time using the recoil-distance Doppler shift and recoil-decay tagging techniques. An unusually low value of the ratio B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+})=0.55(19) was found, similar to a handful of other such anomalous cases observed in the entire Segré chart. The observation adds to a cluster of a few extremely neutron-deficient nuclides of the heavy transition metals with neutron numbers N≈90-94 featuring the effect. No theoretical model calculations reported to date have been able to explain the anomalously low B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+}) ratios observed in these cases. Such low values cannot, e.g., be explained within the framework of the geometrical collective model or by algebraic approaches within the interacting boson model framework. It is proposed that the group of B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+}) ratios in the extremely neutron-deficient even-even W, Os, and Pt nuclei around neutron numbers N≈90-94 reveal a quantum phase transition from a seniority-conserving structure to a collective regime as a function of neutron number. Although a system governed by seniority symmetry is the only theoretical framework for which such an effect may naturally occur, the phenomenon is highly unexpected for these nuclei that are not situated near closed shells.

3.
Nature ; 469(7328): 68-71, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21179086

RESUMO

Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing, in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus (92)Pd. Gamma rays emitted following the (58)Ni((36)Ar,2n)(92)Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution γ-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.

4.
Phys Rev Lett ; 112(9): 092501, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24655248

RESUMO

A multiparticle spin-trap isomer has been discovered in the proton-unbound nucleus (73)(158)Ta85 . The isomer mainly decays by γ-ray emission with a half-life of 6.1(1) µs. Analysis of the γ-ray data shows that the isomer lies 2668 keV above the known 9+ state and has a spin 10ℏ higher and negative parity. This 19- isomer also has an 8644(11) keV, 1.4(2)% α-decay branch that populates the 9+ state in (154)Lu. No proton-decay branch from the isomer was identified, despite the isomer being unbound to proton emission by 3261(14) keV. This remarkable stability against proton emission is compared with theoretical predictions, and the implications for the extent of observable nuclides are considered.

5.
Phys Rev Lett ; 109(1): 012501, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23031099

RESUMO

The rotational band structure of the Z=104 nucleus (256)Rf has been observed up to a tentative spin of 20ℏ using state-of-the-art γ-ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-j orbitals. The moments of inertia therefore provide a sensitive test of shell structure and pairing in superheavy nuclei which is essential to ensure the validity of contemporary nuclear models in this mass region. The data obtained show that there is no deformed shell gap at Z=104, which is predicted in a number of current self-consistent mean-field models.

6.
Phys Rev Lett ; 102(21): 212501, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19519098

RESUMO

The rotational band structure of 255Lr has been investigated using advanced in-beam gamma-ray spectroscopic techniques. To date, 255Lr is the heaviest nucleus to be studied in this manner. One rotational band has been unambiguously observed and strong evidence for a second rotational structure was found. The structures are tentatively assigned to be based on the 1/2-[521] and 7/2-[514] Nilsson states, consistent with assignments from recently obtained alpha decay data. The experimental rotational band dynamic moment of inertia is used to test self-consistent mean-field calculations using the Skyrme SLy4 interaction and a density-dependent pairing force.

7.
Phys Rev Lett ; 99(2): 022501, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17678215

RESUMO

Gamma-ray transitions have been identified for the first time in the extremely neutron-deficient (N=Z+2) nucleus (110)Xe, and the energies of the three lowest excited states in the ground-state band have been deduced. The results establish a breaking of the normal trend of increasing first excited 2(+) and 4(+) level energies as a function of the decreasing neutron number as the N=50 major shell gap is approached for the neutron-deficient Xe isotopes. This unusual feature is suggested to be an effect of enhanced collectivity, possibly arising from isoscalar n-p interactions becoming increasingly important close to the N=Z line.

8.
Phys Rev Lett ; 97(6): 062501, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-17026165

RESUMO

Lifetimes of prolate intruder states in 186Pb and oblate intruder states in 194Po have been determined by employing, for the first time, the recoil-decay tagging technique in recoil distance Doppler-shift lifetime measurements. In addition, lifetime measurements of prolate states in 188Pb up to the 8+ state were carried out using the recoil-gating method. The B(E2) values have been deduced from which deformation parameters |beta2|=0.29(5) and |beta2|=0.17(3) for the prolate and the oblate bands, respectively, have been extracted. The results also shed new light on the mixing between different shapes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA