Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurochem Res ; 48(10): 3084-3098, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37336824

RESUMO

Mesenchymal stem/stromal cells (MSCs) are spindle-like heterogeneous cell populations with advantageous bidirectional immunomodulatory and hematopoietic support effects. Vascular cellular adhesion molecule-1 (VCAM-1)+ MSCs have been reported to exhibit immunoregulatory and proangiogenic capacities. Here, we studied the effects of VCAM-1+ human umbilical cord (hUC)-MSCs on neuroprotection against cerebral infarction. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), and VCAM-1- and VCAM-1+ hUC-MSCs were intravenously injected into the rat 4 h post-MCAO surgery. Thereafter, modified neurological severity scores (mNSS) were determined, and the Morris water maze test, 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin (H&E), Nissl, TUNEL staining, and qRT-PCR were conducted. Following induction of oxygen-glucose deprivation/reoxygenation (OGD/R), SH-SY5Y cells were co-cultured with VCAM-1- and VCAM-1+ hUC-MSCs. CCK-8, flow cytometry, ELISA, and western blot analyses were performed in vitro. Compared with VCAM-1- hUC-MSCs, administration of VCAM-1+ hUC-MSCs revealed improved therapeutic efficacy against cerebral infarction in rats, as confirmed by lower mNSS scores and infarct volumes, as well as improved learning and memory capacities. In addition, VCAM-1+ hUC-MSCs exhibited improved efficacy against neurological defects in rats with cerebral infarction, accompanied by inhibition of the NLRP3-mediated inflammatory response. VCAM-1+ hUC-MSC co-culture improved the viability and diminished NLRP3-mediated inflammatory response in OGD/R-treated SH-SY5Y cells. Moreover, NLRP3 overexpression in SH-SY5Y cells prevented the beneficial effects of VCAM-1+ hUC-MSC co-culture. Overall, our findings demonstrated the relevance of VCAM-1+ hUC-MSC-based cytotherapy for preclinical neuroprotection against cerebral infarction.


Assuntos
Transplante de Células-Tronco Mesenquimais , Neuroblastoma , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Molécula 1 de Adesão de Célula Vascular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Neuroproteção , Infarto da Artéria Cerebral Média/terapia , Cordão Umbilical
2.
Mol Cell Proteomics ; 20: 100001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33517144

RESUMO

Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo myriad posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both Plasmodium falciparum, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the host-parasite interaction and pathogenesis. Furthermore, P. falciparum stabilized the supporting proteins of erythrocyte origin by selective demodification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of P. falciparum and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.


Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Humanos , Malária Falciparum/parasitologia , Proteoma/metabolismo
3.
Exp Parasitol ; 246: 108457, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36599388

RESUMO

Trichinellosis is caused by Trichinella spiralis, a meat-borne zoonotic disease transmitted to humans through the consumption of infected undercooked or raw meat. Surveillance using safe and precise diagnostic tools to diagnose T. spiralis in sheep is needed to assess the incidence and probability of transmission from sheep to humans. In this study, we developed a real-time PCR assay to detect T. spiralis DNA in ovine muscle samples that can be used as an alternative surveillance tool to ensure food safety using newly designed primers. The assay is specific for the Scfld4 gene of Trichinella (T1) and enables the detection of larvae in ovine muscle tissue samples with high sensitivity and specificity. Trichuris ovis, Oesophagostomum dentatum, Haemonchus contortus, and Bunostomum trigonocephalum showed no nonspecific amplification. The assay could detect Trichinella DNA concentrations as low as 0.0026 ng/µL, equivalent to 0.0064 larvae, indicating a high sensitivity for T. spiralis detection. We used this real-time PCR to detect 73 ovine muscle samples from an ovine abattoir, and five samples tested positive via real-time PCR but negative via microscopy. This assay may provide a more specific and sensitive method for rapidly detecting Trichinella larvae in ovine muscle tissues.


Assuntos
Trichinella spiralis , Trichinella , Triquinelose , Humanos , Animais , Ovinos/genética , Trichinella spiralis/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Triquinelose/diagnóstico , Triquinelose/veterinária , Triquinelose/epidemiologia , Trichinella/genética , Músculos , Larva/genética , DNA
4.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902335

RESUMO

Toxoplasma gondii is an obligate protozoon that can infect all warm-blooded animals including humans. T. gondii afflicts one-third of the human population and is a detriment to the health of livestock and wildlife. Thus far, traditional drugs such as pyrimethamine and sulfadiazine used to treat T. gondii infection are inadequate as therapeutics due to relapse, long treatment period, and low efficacy in parasite clearance. Novel, efficacious drugs have not been available. Lumefantrine, as an antimalarial, is effective in killing T. gondii but has no known mechanism of action. We combined metabolomics with transcriptomics to investigate how lumefantrine inhibits T. gondii growth. We identified significant alternations in transcripts and metabolites and their associated functional pathways that are attributed to lumefantrine treatment. RH tachyzoites were used to infect Vero cells for three hours and subsequently treated with 900 ng/mL lumefantrine. Twenty-four hours post-drug treatment, we observed significant changes in transcripts associated with five DNA replication and repair pathways. Metabolomic data acquired through liquid chromatography-tandem mass spectrometry (LC-MS) showed that lumefantrine mainly affected sugar and amino acid metabolism, especially galactose and arginine. To investigate whether lumefantrine damages T. gondii DNA, we conducted a terminal transferase assay (TUNEL). TUNEL results showed that lumefantrine significantly induced apoptosis in a dose-dependent manner. Taken together, lumefantrine effectively inhibited T. gondii growth by damaging DNA, interfering with DNA replication and repair, and altering energy and amino acid metabolisms.


Assuntos
Toxoplasma , Animais , Chlorocebus aethiops , Humanos , Toxoplasma/metabolismo , Células Vero , Transcriptoma , Lumefantrina/farmacologia , Aminoácidos/metabolismo
5.
Parasitology ; 148(1): 122-128, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33087183

RESUMO

Toxoplasma gondii is an obligate intracellular protozoan parasite, which can infect almost all warm-blooded animals, including humans, leading to toxoplasmosis. Currently, the effective treatment for human toxoplasmosis is the combination of sulphadiazine and pyrimethamine. However, both drugs have serious side-effects and toxicity in the host. Therefore, there is an urgent need for the discovery of new anti-T. gondii drugs with high potency and less or no side-effects. Our findings suggest that lumefantrine exerts activity against T. gondii by inhibiting its proliferation in Vero cells in vitro without being toxic to Vero cells (P ≤ 0.01). Lumefantrine prolonged mice infected with T. gondii from death for 3 days at the concentration of 50 µg L-1 than negative control (phosphate-buffered saline treated only), and reduced the parasite burden in mouse tissues in vivo (P ≤ 0.01; P ≤ 0.05). In addition, a significant increase in interferon gamma (IFN-γ) production was observed in high-dose lumefantrine-treated mice (P ≤ 0.01), whereas interleukin 10 (IL-10) and IL-4 levels increased in low-dose lumefantrine-treated mice (P ≤ 0.01). The results demonstrated that lumefantrine may be a promising agent to treat toxoplasmosis, and more experiments on the protective mechanism of lumefantrine should be undertaken in further studies.


Assuntos
Lumefantrina/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Camundongos , Células Vero
6.
Mol Cell Proteomics ; 18(11): 2207-2224, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31488510

RESUMO

Toxoplasma gondii is a unicellular protozoan parasite of the phylum Apicomplexa. The parasite repeatedly goes through a cycle of invasion, division and induction of host cell rupture, which is an obligatory process for proliferation inside warm-blooded animals. It is known that the biology of the parasite is controlled by a variety of mechanisms ranging from genomic to epigenetic to transcriptional regulation. In this study, we investigated the global protein posttranslational lysine crotonylation and 2-hydroxyisobutyrylation of two T. gondii strains, RH and ME49, which represent distinct phenotypes for proliferation and pathogenicity in the host. Proteins with differential expression and modification patterns associated with parasite phenotypes were identified. Many proteins in T. gondii were crotonylated and 2-hydroxyisobutyrylated, and they were localized in diverse subcellular compartments involved in a wide variety of cellular functions such as motility, host invasion, metabolism and epigenetic gene regulation. These findings suggest that lysine crotonylation and 2-hydroxyisobutyrylation are ubiquitous throughout the T. gondii proteome, regulating critical functions of the modified proteins. These data provide a basis for identifying important proteins associated with parasite development and pathogenicity.


Assuntos
Histonas/química , Lisina/análogos & derivados , Proteoma/análise , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Lisina/química , Fenótipo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Homologia de Sequência , Toxoplasma/classificação , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/parasitologia
7.
J Infect Dis ; 222(1): 126-135, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32060530

RESUMO

Many obligate intracellular apicomplexan parasites have adapted a distinct invasion mechanism involving a close interaction between the parasite ligands and the sialic acid (SA) receptor. We found that sialic acid binding protein-1 (SABP1), localized on the outer membrane of the zoonotic parasite Toxoplasma gondii, readily binds to sialic acid on the host cell surface. The binding was sensitive to neuraminidase treatment. Cells preincubated with recombinant SABP1 protein resisted parasite invasion in vitro. The parasite lost its invasion capacity and animal infectivity after the SABP1 gene was deleted, whereas complementation of the SABP1 gene restored the virulence of the knockout strain. These data establish the critical role of SABP1 in the invasion process of T. gondii. The previously uncharacterized protein, SABP1, facilitated T. gondii attachment and invasion via sialic acid receptors.


Assuntos
Proteínas de Transporte/genética , Interações Hospedeiro-Parasita , Infecções/genética , Ácido N-Acetilneuramínico/metabolismo , Toxoplasma/genética , Toxoplasmose/genética , Virulência/genética , Animais , Infecções/fisiopatologia , Modelos Animais , Ácido N-Acetilneuramínico/genética , Toxoplasmose/fisiopatologia
8.
Malar J ; 17(1): 232, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914511

RESUMO

BACKGROUND: Plasmodium falciparum is the most virulent parasite of the five Plasmodium species that cause human malaria, and biological analysis of the parasite is critical for the development of novel strategies for disease control. DNA endonucleases are important for maintaining the biological activity, gene stability of the parasite and interaction with host immune systems. In this study, ten sequences of DNA endonucleases were found in the genome of P. falciparum 3D7 clone, seven of them were predicted to contain an endonuclease/exonuclease/phosphatase (IPR005135) domain which plays an important role in DNA catalytic activity. The seven DNA endonucleases of P. falciparum were systematically investigated. METHODS: Plasmodium falciparum 3D7 clone was cultured in human O+ RBCs, RNA was extracted at 8, 16, 24, 32, 40, and 48 h post invasion and real-time quantitative PCR was carried out to analyse the transcription of the seven DNA endonuclease genes in asexual stages. Immunofluorescence assay was carried out to confirm the location of the encoded proteins expressed in the erythrocytic stages. Finally, the catalytic activity of the DNA nucleases were tested. RESULTS: Of the seven proteins analysed, two proteins were not soluble. Fragments derived from the rest five endonuclease sequences were successfully expressed as soluble proteins, and which were used to generate antisera for protein localization. The proteins were all located in the nucleus at ring and trophozoite stages. While at schizont stage, proteins encoded by PF3D7_1238600, PF3D7_0107200 and PF3D7_0319200 were in the punctuated forms in the parasite most likely around nuclei of the merozoites. But the proteins encoded by PF3D7_0305600 and PF3D7_1363500 were distributed around the infected erythrocyte membrane. The enzymatic activity of the recombinant GST-PF3D7_1238600 was very efficient without divalent iron, while the activity of the rest four enzymes was iron dependent. Further, divalent irons did not show any specific enhancement on the activity of GST-PF3D7_1238600, but the activity of GST-PF3D7_0107200, GST-PF3D7_1363500 and GST-PF3D7_0319200 were Cu2+ dependent. The activity of GST-PF3D7_0305600 was dependent on Mg2+ and Mn2+. Except GST-PF3D7_1363500, four of the GST tagged recombinant proteins hydrolysed the supercoiled circular plasmid DNA with or without divalent metal ions. The GST-PF3D7_1363500 protein only changed the supercoiled circular plasmid DNA into nicked plasmids, even with Cu2+. CONCLUSIONS: Fragments derived from five of the endonuclease sequences of P. falciparum 3D7 clone were successfully expressed. The proteins displayed diverse cell distribution, biochemical and enzymatic activities, which indicated that they carried different biological function in the development of the parasite in the erythrocytes. The DNA repair and DNA degradation capacity of the DNA endonucleases in the biology of the parasite remained further studied.


Assuntos
Desoxirribonuclease I/genética , Eritrócitos/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Desoxirribonuclease I/metabolismo , Merozoítos/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esquizontes/metabolismo , Análise de Sequência de DNA
9.
J Eukaryot Microbiol ; 65(6): 843-853, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29664138

RESUMO

The eukaryotic ribonucleic acid (RNA) exosome is a versatile multiribonuclease complex that mediates the processing, surveillance, and degradation of virtually all classes of RNA in both the nucleus and cytoplasm. The complex, composed of 10 to 11 subunits, has been widely described in many organisms. Bioinformatic analyses revealed that there may be also an exosome-like complex in Plasmodium falciparum, a parasite of great importance in public health, with eight predicted subunits having high sequence similarity to their counterparts in yeast and human. In this work, the putative RNA catalytic components, designated as PfRrp4, PfRrp41, PfDis3, and PfRrp6, were identified and systematically analyzed. Quantitative polymerase chain reaction (QPCR) analyses suggested that all of them were transcribed steadily throughout the asexual stage. The expression of these proteins was determined by Western blot, and their localization narrowed to the cytoplasm of the parasite by indirect immunofluorescence. The recombinant proteins of PfRrp41, PfDis3, and PfRrp6 exhibited catalytic activity for single-stranded RNA (ssRNA), whereas PfRrp4 showed no processing activity of both ssRNA and dsRNA. The identification of these putative components of the RNA exosome complex opens up new perspectives for a deep understanding of RNA metabolism in the malarial parasite P. falciparum.


Assuntos
Domínio Catalítico , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Recombinantes/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica , Proteoma , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA , Proteínas Recombinantes de Fusão , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
10.
J Virol ; 89(17): 8806-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26085150

RESUMO

UNLABELLED: The novel H7N9 avian influenza virus (AIV) was demonstrated to cause severe human respiratory infections in China. Here, we examined poultry specimens from live bird markets linked to human H7N9 infection in Hangzhou, China. Metagenomic sequencing revealed mixed subtypes (H5, H7, H9, N1, N2, and N9). Subsequently, AIV subtypes H5N9, H7N9, and H9N2 were isolated. Evolutionary analysis showed that the hemagglutinin gene of the novel H5N9 virus originated from A/Muscovy duck/Vietnam/LBM227/2012 (H5N1), which belongs to clade 2.3.2.1. The neuraminidase gene of the novel H5N9 virus originated from human-infective A/Hangzhou/1/2013 (H7N9). The six internal genes were similar to those of other H5N1, H7N9, and H9N2 virus strains. The virus harbored the PQRERRRKR/GL motif characteristic of highly pathogenic AIVs at the HA cleavage site. Receptor-binding experiments demonstrated that the virus binds α-2,3 sialic acid but not α-2,6 sialic acid. Identically, pathogenicity experiments also showed that the virus caused low mortality rates in mice. This newly isolated H5N9 virus is a highly pathogenic reassortant virus originating from H5N1, H7N9, and H9N2 subtypes. Live bird markets represent a potential transmission risk to public health and the poultry industry. IMPORTANCE: This investigation confirms that the novel H5N9 subtype avian influenza A virus is a reassortant strain originating from H5N1, H7N9, and H9N2 subtypes and is totally different from the H5N9 viruses reported before. The novel H5N9 virus acquired a highly pathogenic H5 gene and an N9 gene from human-infecting subtype H7N9 but caused low mortality rates in mice. Whether this novel H5N9 virus will cause human infections from its avian host and become a pandemic subtype is not known yet. It is therefore imperative to assess the risk of emergence of this novel reassortant virus with potential transmissibility to public health.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Neuraminidase/genética , Vírus Reordenados/genética , Receptores Virais/genética , Animais , Sequência de Bases , Aves , Genes Virais/genética , Humanos , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/virologia , Influenza Humana/virologia , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Receptores Virais/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Ligação Viral
11.
Arch Virol ; 160(5): 1267-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25782865

RESUMO

The worldwide circulation of H9N2 avian influenza virus in poultry, the greater than 2.3 % positive rate for anti-H9 antibodies in poultry-exposed workers, and several reports of human infection indicate that H9N2 virus is a potential threat to human health. Here, we found three mutations that conferred high virulence to H9N2 virus in mice after four passages. The PB2-E627K substitution rapidly appeared at the second passage and played a decisive role in virulence. Polymerase complexes possessing PB2-E627K displayed 16.1-fold higher viral polymerase activity when compared to the wild-type virus, which may account for enhanced virulence of this virus. The other two substitutions (HA-N313D and HA-N496S) enhanced binding to both α2,3-linked and α2,6-linked sialic acid receptors; however, the HA-N313D and N496S substitutions alone decreased the virulence of mouse-adapted virus. Furthermore, this mouse-adapted virus was still not transmissible among guinea pigs by direct contact (0/3 pairs). Our findings show that adaption in mice enhanced the viral polymerase activity and receptor-binding ability, which resulted in a virulent phenotype in mice but not a transmissible phenotype in guinea pigs, indicating that host factors play an important role in adaptive evolution of influenza in new hosts.


Assuntos
Adaptação Biológica , Substituição de Aminoácidos , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Infecções por Orthomyxoviridae/virologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Animais , Feminino , Cobaias , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H9N2/fisiologia , Camundongos Endogâmicos BALB C , Mutação de Sentido Incorreto , Infecções por Orthomyxoviridae/transmissão , RNA Polimerase Dependente de RNA/metabolismo , Inoculações Seriadas , Proteínas Virais/metabolismo , Virulência , Ligação Viral , Replicação Viral
12.
Parasit Vectors ; 17(1): 105, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439083

RESUMO

BACKGROUND: The human sortilin protein is an important drug target and detection marker for cancer research. The sortilin from Toxoplasma gondii transports proteins associated with the apical organelles of the parasite. In this study, we aimed to determine the intracellular localization and structural domains of T. gondii sortilin, which may mediate protein transportation. Approaches to the functional inhibition of sortilin to establish novel treatments for T. gondii infections were explored. METHODS: A gene encoding the sortilin protein was identified in the T. gondii genome. Immunoprecipitation and mass spectrometry were performed to identify the protein species transported by T. gondii sortilin. The interaction of each structural domain of sortilin with the transported proteins was investigated using bio-layer interferometry. The binding regions of the transported proteins in sortilin were identified. The effect of the sortilin inhibitor AF38469 on the infectivity of T. gondii was investigated. The binding site of AF38469 on sortilin was determined. RESULTS: The subdomains Vps10, sortilin-C, and sortilin-M of the sortilin were identified as the binding regions for intracellular transportation of the target proteins. The sortilin inhibitor AF38469 bound to the Vps10 structural domain of T. gondii sortilin, which inhibited parasite invasion, replication, and intracellular growth in vitro and was therapeutic in mice infected with T. gondii. CONCLUSION: The Vps10, sortilin-C, and sortilin-M subdomains of T. gondii sortilin were identified as functional regions for intracellular protein transport. The binding region for the sortilin inhibitor AF38469 was also identified as the Vps10 subdomain. This study establishes sortilin as a promising drug target against T. gondii and provides a valuable reference for the development of anti-T. gondii drug-target studies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Hidrocarbonetos Fluorados , Parasitos , Piridinas , Toxoplasma , Humanos , Animais , Camundongos , Toxoplasma/genética , Proliferação de Células
13.
Int J Biol Macromol ; 264(Pt 1): 130522, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428777

RESUMO

Kudzu, a plant known for its medicinal value and health benefits, is typically consumed in the form of starch. However, the use of native kudzu starch is limited by its high pasting temperature and low solubility, leading to a poor consumer experience. In this study, kudzu starch was treated using six modification techniques: ball milling, extrusion puffing, alcoholic-alkaline, urea-alkaline, pullulanase, and extrusion puffing-pullulanase. The results of the Fourier transform infrared spectrum showed that the intensity ratio of 1047/1022 cm-1 for the modified starches (1.02-1.21) was lower than that of the native kudzu starch (1.22). The relative crystallinity of modified kudzu starch significantly decreased, especially after ball milling, extrusion puffing, and alcoholic-alkaline treatment. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed significant changes in the granular structures of the modified starches. After modification, the pasting temperature of kudzu starch decreased (except for the urea-alkaline treatment), and the apparent viscosity of kudzu starch decreased from 517.95 Pa·s to 0.47 Pa·s. The cold-water solubility of extrusion-puffing and extrusion puffing-pullulanase modified kudzu starch was >70 %, which was significantly higher than that of the native starch (0.11 %). These findings establish a theoretical basis for the potential development of instant kudzu powder.


Assuntos
Pueraria , Amido , Amido/química , Solubilidade , Pueraria/química , Viscosidade , Água/química , Ureia
14.
Int Immunopharmacol ; 134: 112250, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749335

RESUMO

Trypanosoma brucei, a causative agent of human and animal trypanosomiasis, regularly switches its major surface antigen to avoid elimination by the immune system. Toll-like receptor 9 (TLR9) is a key modulator for resistance to host-infective trypanosomes; however, the underlying molecular mechanism remains indistinct. Thus, we first approached the issue using Tlr9-mutant mice that render them non-responsive to TLR9 agonists. After infection, T cells in the spleens of Tlr9-mutant mice were analyzed by flow cytometry and a reduction in CD8+, CD4+ T, and NKT cells was observed in Tlr9-mutant mice compared to WT mice. We further found that the responses of inflammatory cytokines in the sera were reduced in Tlr9-mutant mice after T. brucei infection. The underlying molecular mechanism was that T. b. brucei DNA activated TLR9, which consequently upregulated the expression of p38 and ERK/MAPK, resulting in host resistance to trypanosome infection. In conclusion, these findings provide novel insights into the TLR9-mediated host responses to trypanosome infection.


Assuntos
Citocinas , Transdução de Sinais , Receptor Toll-Like 9 , Trypanosoma brucei brucei , Tripanossomíase Africana , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/agonistas , Animais , Trypanosoma brucei brucei/imunologia , Tripanossomíase Africana/imunologia , Camundongos , Citocinas/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Humanos
15.
mBio ; 15(4): e0351023, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470053

RESUMO

Remodeling the erythrocyte membrane and skeleton by the malarial parasite Plasmodium falciparum is closely associated with intraerythrocytic development. However, the mechanisms underlying this association remain unclear. In this study, we present evidence that erythrocytic α-spectrin, but not ß-spectrin, was dynamically ubiquitinated and progressively degraded during the intraerythrocytic development of P. falciparum, from the ring to the schizont stage. We further observed an upregulated expression of P. falciparum phosphatidylinositol 3-kinase (PfPI3K) in the infected red blood cells during the intraerythrocytic development of the parasite. The data indicated that PfPI3K phosphorylated and activated erythrocytic ubiquitin-protein ligase, leading to increased α-spectrin ubiquitination and degradation during P. falciparum development. We further revealed that inhibition of the activity of PfPI3K impaired P. falciparum development in vitro and Plasmodium berghei infectivity in mice. These findings collectively unveil an important mechanism of PfPI3K-ubiquitin-mediated degradation of α-spectrin during the intraerythrocytic development of Plasmodium species. Proteins in the PfPI3K regulatory pathway are novel targets for effective treatment of severe malaria. IMPORTANCE: Plasmodium falciparum is the causative agent of severe malaria that causes millions of deaths globally. The parasite invades human red blood cells and induces a cascade of alterations in erythrocytes for development and proliferation. Remodeling the host erythrocytic cytoskeleton is a necessary process during parasitization, but its regulatory mechanisms remain to be elucidated. In this study, we observed that erythrocytic α-spectrin is selectively degraded after P. falciparum invasion, while ß-spectrin remained intact. We found that the α-spectrin chain was profoundly ubiquitinated by E3 ubiquitin ligase and degraded by the 26S proteasome. E3 ubiquitin ligase activity was regulated by P. falciparum phosphatidylinositol 3-kinase (PfPI3K) signaling. Additionally, blocking the PfPI3K-ubiquitin-proteasome pathway in P. falciparum-infected red blood cells reduced parasite proliferation and infectivity. This study deepens our understanding of the regulatory mechanisms of host and malarial parasite interactions and paves the way for the exploration of novel antimalarial drugs.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Animais , Camundongos , Plasmodium falciparum/metabolismo , Espectrina/metabolismo , Espectrina/farmacologia , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Ubiquitina/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
Nat Commun ; 15(1): 4913, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851821

RESUMO

Host immune responses are tightly controlled by various immune factors during infection, and protozoan parasites also manipulate the immune system to evade surveillance, leading to an evolutionary arms race in host‒pathogen interactions; however, the underlying mechanisms are not fully understood. We observed that the level of superoxide dismutase 3 (SOD3) was significantly elevated in both Plasmodium falciparum malaria patients and mice infected with four parasite species. SOD3-deficient mice had a substantially longer survival time and lower parasitemia than control mice after infection, whereas SOD3-overexpressing mice were much more vulnerable to parasite infection. We revealed that SOD3, secreted from activated neutrophils, bound to T cells, suppressed the interleukin-2 expression and concomitant interferon-gamma responses crucial for parasite clearance. Overall, our findings expose active fronts in the arms race between the parasites and host immune system and provide insights into the roles of SOD3 in shaping host innate immune responses to parasite infection.


Assuntos
Malária Falciparum , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos , Superóxido Dismutase , Animais , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Humanos , Camundongos , Neutrófilos/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Imunidade Celular , Linfócitos T/imunologia , Plasmodium falciparum/imunologia , Feminino , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Parasita/genética , Interferon gama/metabolismo , Interferon gama/imunologia , Masculino , Imunidade Inata , Interleucina-2/metabolismo , Interleucina-2/imunologia , Interleucina-2/genética , Parasitemia/imunologia
17.
Arch Virol ; 158(10): 2127-34, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23665767

RESUMO

Several cases of humans infected with the H9N2 avian influenza virus (AIV) have been described since 1999; however, the infectivity and pathogenicity of H9N2 in humans is not well defined. A non-human primate model in rhesus macaques was developed to study H9N2 virus infections as a means of better understanding the pathogenesis and virulence of this virus, in addition to testing antiviral drugs. Rhesus macaques inoculated with H9N2 AIV presented with biphasic fever and viral pneumonia. H9N2 was recovered from nasal washes and pharyngeal samples up to days 7-9 postinfection, followed by an increase in HI (hemagglutination inhibition) antibody titers. Tissue tropism and immunohistochemistry indicated that H9N2 AIV replicated in the upper respiratory tract (turbinate, trachea, and bronchus) and in all lobes of the lung. Our data suggest that rhesus macaques are a suitable animal model to study H9N2 influenza virus infections, particularly in the context of viral evolution and pathogenicity.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae/veterinária , Animais , Feminino , Macaca mulatta , Nariz/virologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Faringe/virologia , Fatores de Tempo , Distribuição Tecidual , Tropismo Viral , Eliminação de Partículas Virais
18.
Chem Asian J ; 18(24): e202300820, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37953663

RESUMO

High-energy-density lithium-ion batteries (LIBs) with high safety have long been pursued for extending the cruise range of electric vehicles. Owing to the high gravimetric capacity, silicon is a promising alternative to the convention graphite anode for high-energy LIBs. However, it suffers from intrinsic poor interfacial stability with liquid electrolytes, inevitably increasing the risk of thermal runaway and posing serious safety challenges. In this review, we will focus on mitigating thermal runaway of silicon anodes-based LIBs from the perspective of electrolyte design. First, the thermal runaway mechanism of LIBs is briefly introduced, while the specific thermal failure reactions associated with silicon anodes and electrolytes are discussed in detail. We then summarize the safety countermeasures (e. g., thermally stable solid electrolyte interphase, nonflammable electrolytes, highly stable lithium salts, mitigating electrode crosstalk, and solid-state electrolytes) enabled by customized electrolyte design to address these triggers of thermal runaway. Finally, the remaining unanswered questions regarding the thermal runaway mechanism are presented, and future directions to achieve intrinsically safe electrolytes for silicon-based anodes are prospected. This review is expected to provide insightful knowledge for improving the safety of LIBs with silicon-based anodes.

19.
Pathogens ; 12(7)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37513749

RESUMO

Sarcocystosis is an intracellular parasitic disease caused by Sarcocystis spp. that has a worldwide prevalence. Symptoms of the disease include diarrhea and muscle pain. The disease poses a threat to the health of animals. The aim of this review is to investigate the global prevalence of Sarcocystis infection in sheep and goats during 2013-2022. We searched five databases: Web of Science, Science Direct, PubMed, Scopus, and Google Scholar. A total of 36 articles containing 44 datasets met the criteria and were included in the study. The total infection rates of Sarcocystis in sheep and goats were 66.3% (95% CI, 51.79-79.38%) and 52.1% (95% CI, 29.45-74.23%), respectively. It was found that Sarcocystis species tend to have a host species preference. Coinfection of S. tenella and S. arieticanis often occurred in sheep, and goats were frequently infected with S. capracanis. Age and sex were identified as risk factors for Sarcocystis infection in sheep and goats. The infection rates of female and male animals were significantly different, with females having a higher infection rate. Age-adjusted analysis showed that infection rates in animals older than one year were higher than in animals younger than one year. This study unveiled the global distribution of Sarcocystis and sheds light on its transmission in sheep and goats.

20.
Parasit Vectors ; 16(1): 277, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563696

RESUMO

BACKGROUND: Malaria caused by Plasmodium species is a prominent public health concern worldwide, and the infection of a malarial parasite is transmitted to humans through the saliva of female Anopheles mosquitoes. Plasmodium invasion is a rapid and complex process. A critical step in the blood-stage infection of malarial parasites is the adhesion of merozoites to red blood cells (RBCs), which involves interactions between parasite ligands and receptors. The present study aimed to investigate a previously uncharacterized protein, PbMAP1 (encoded by PBANKA_1425900), which facilitates Plasmodium berghei ANKA (PbANKA) merozoite attachment and invasion via the heparan sulfate receptor. METHODS: PbMAP1 protein expression was investigated at the asexual blood stage, and its specific binding activity to both heparan sulfate and RBCs was analyzed using western blotting, immunofluorescence, and flow cytometry. Furthermore, a PbMAP1-knockout parasitic strain was established using the double-crossover method to investigate its pathogenicity in mice. RESULTS: The PbMAP1 protein, primarily localized to the P. berghei membrane at the merozoite stage, is involved in binding to heparan sulfate-like receptor on RBC surface of during merozoite invasion. Furthermore, mice immunized with the PbMAP1 protein or passively immunized with sera from PbMAP1-immunized mice exhibited increased immunity against lethal challenge. The PbMAP1-knockout parasite exhibited reduced pathogenicity. CONCLUSIONS: PbMAP1 is involved in the binding of P. berghei to heparan sulfate-like receptors on RBC surface during merozoite invasion.


Assuntos
Merozoítos , Plasmodium berghei , Humanos , Feminino , Animais , Camundongos , Plasmodium berghei/genética , Merozoítos/metabolismo , Proteínas de Protozoários , Eritrócitos/parasitologia , Proteínas de Transporte/metabolismo , Plasmodium falciparum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA