Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2405300, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308294

RESUMO

Zn ion batteries (ZIBs) are promising for large-scale energy storage but their practical application is plagued by inhomogeneous Zn deposition. Despite much effort, the harm of simultaneous hydrogen evolution reaction (HER) during plating to Zn deposition, has not received sufficient studies. Herein, Sn-modified Cu nanowires (Sn@CuNWs) with Sn-Cu core-shell nanostructure to achieve uniform Zn deposition by zinc affinity-HER tendency trade-off are fabricated. Confirmed by both theoretical calculation and practical characterization, the nanowires with high zinc affinity and large deposition sites facilitate Zn deposition, while the enlarged HER tendency harmful to Zn plating is inhibited by Sn nanoshell. Therefore, the Zn deposited Sn@CuNWs anode delivers a long lifespan of 800 h at 5 mA cm-2, and the full cell exhibits a high capacity of 294.4 mAh g-1 at 5 A g-1 and a high capacity retention of 97.8% after 2500 cycles. This work reveals the importance of HER regulation for reversible Zn deposition, which should be noticed in further research.

2.
Angew Chem Int Ed Engl ; : e202408500, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115946

RESUMO

Electrochemical synthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e--ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e--ORR electrocatalysis, but they have to be commonly loaded on conductive substrates, thus exposing a large number of 2e--ORR-inactive sites that result in poor H2O2 production rate and efficiency. Herein, guided by first-principle predictions, a substrate-free and two-dimensional conductive metal-organic framework (Ni-TCPP(Co)), composed of Co-N4 sites in porphine(Co) centers and Ni2O8 nodes, is designed as a multi-site catalyst for H2O2 electrosynthesis. The approperiate distance between the CoN4 and Ni2O8 sites in Ni-TCPP(Co) weakens the electron transfer between them, thus ensuring their inherent activities and creating high-density active sites. Meanwhile, the intrinsic electronic conductivity and porosity of Ni-TCPP(Co) further facilitate rapid reaction kinetics. Therefore, outstanding 2e--ORR electrocatalytic performance has been achieved in both alkaline and neutral electrolytes (>90%/85% H2O2 selectivity within 0-0.8 V vs. RHE and >18.2/18.0 mol g-1 h-1 H2O2 yield under alkaline/neutral conditions), with confirmed feasibility for water purification and disinfection applications. This strategy thus provides a new avenue for designing catalysts with precise coordination and high-density active sites, promoting high-efficiency electrosynthesis of H2O2 and beyond.

3.
Small ; 16(25): e2001265, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32431059

RESUMO

The design and construction of flexible electrodes that can function at high rates and high areal capacities are essential regarding the practical application of flexible sodium-ion batteries (SIBs) and other energy storage devices, which remains significantly challenging by far. Herein, a flexible and 3D porous graphene nanosheet/SnS2 (3D-GNS/SnS2 ) film is reported as a high-performance SIB electrode. In this hybrid film, the GNS/SnS2 microblocks serve as pillars to assemble into a 3D porous and interconnected framework, enabling fast electron/ion transport; while the GNS bridges the GNS/SnS2 microblocks into a flexible framework to provide satisfactorily mechanical strength and long-range conductivity. Moreover, the SnS2 nanocrystals, which chemically bond with GNS, provide sufficient active sites for Na storage and ensure the cycling stability. Consequently, this flexible 3D-GNS/SnS2 film exhibits excellent Na-storage performances, especially in terms of high areal capacity (2.45 mAh cm-2 ) and high rates with superior stability (385 mAh g-1 at 1.0 A g-1 over 1000 cycles with ≈100% retention). A flexible SIB full cell using this anode exhibits high and stable performance under various bending situations. Thus, this work provide a feasible route to prepare flexible electrodes with high practical viability for not only SIBs but also other energy storage devices.

4.
Adv Mater ; : e2406403, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036826

RESUMO

Designing non-noble metal single-atom catalysts (M-SACs) for two-electron oxygen reduction reaction (2e-ORR) is attractive for the hydrogen peroxide (H2O2) electrosynthesis, in which the coordination configuration of the M-SACs essentially affects the reaction activity and product selectivity. Though extensively investigated, a generalized coordination engineering strategy has not yet been proposed, which fundamentally hinders the rational design of M-SACs with optimized catalytic capabilities. Herein, a generalized coordination engineering strategy is proposed for M-SACs toward H2O2 electrosynthesis via introducing heteroatoms (e.g., oxygen or sulfur atoms) with higher or lower electronegativity than nitrogen atoms into the first sphere of metal-N4 system to tailor their electronic structure and adjust the adsorption strength for *OOH intermediates, respectively, thus optimizing their electrocatalytic capability for 2e-ORR. Specifically, the (O, N)-coordinated Co SAC (Co-N3O) and (S, N)-coordinated Ni SAC (Ni-N3S) are precisely synthesized, and both present superior 2e-ORR activity (Eonset: ≈0.80 V versus RHE) and selectivity (≈90%) in alkaline conditions compared with conventional Co-N4 and Ni-N4 sites. The high H2O2 yield rates of 14.2 and 17.5 moL g-1 h-1 and long-term stability over 12 h are respectively achieved for Co-N3O and Ni-N3S. Such favorable 2e-ORR pathway of the catalysts is also theoretically confirmed by the kinetics simulations.

5.
ACS Nano ; 18(28): 18622-18634, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38946316

RESUMO

Advancing the high-voltage stability of the O3-type layered cathodes for sodium-ion batteries is critical to boost their progress in energy storage applications. However, this type of cathode often suffers from intricate phase transition and structural degradation at high voltages (i.e., >4.0 V vs Na+/Na), resulting in rapid capacity decay. Here, we present a Li/Ti cosubstitution strategy to modify the electronic configuration of oxygen elements in the O3-type layered oxide cathode. This deliberate modulation simultaneously mitigates the phase transitions and counteracts the weakening of the shielding effect resulting from the extraction of sodium ions, thus enhancing the electrostatic bonding within the TM layer and inducing and optimizing the O3-OP2 phase transition occurring in the voltage range of 2.0-4.3 V. Consequently, the cosubstituted NaLi1/9Ni1/3Mn4/9Ti1/9O2 exhibits an astounding capacity of 161.2 mAh g-1 in the voltage range of 2.0-4.3 V at 1C, and stable cycling up to 100 cycles has been achieved. This work shows the impact mechanism of element substitution on interlayer forces and phase transitions, providing a crucial reference for the optimization of O3-type materials.

6.
ACS Nano ; 17(3): 3077-3087, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36688450

RESUMO

Aqueous Zn-based batteries (ZIBs) possess huge advantages in terms of high safety, low cost, and environmental friendliness. However, the lack of suitable cathodes with high-capacity, long-cycling, and high-rate capability limits their practical application. Herein, we present a highly crystalline one-dimensional π-d conjugated conductive metal-organic framework by coordinating ultrasmall 1,2,4,5-benzenetetramine (BTA) linkers with copper ions (Cu-BTA-H), as a cathode for ZIBs. The large ratio of active sites and dual redox mechanism of Cu-BTA-H, including the one-electron-redox reaction over copper ions (via Cu2+/Cu+) and the two-electron-redox reaction over organic ligands (via C═N/C-N), effectively enhance its reversible capacity. Meanwhile, the abundant porosity, small band gap, high crystallinity, and stable coordination structure of Cu-BTA-H endow it with fast ion/electron transport and effectively hinder the dissolution of organic ligands during cycling, respectively. Consequently, Cu-BTA-H possesses a high reversible capacity of 330 mAh g-1 at 200 mA g-1 and excellent rate performance and long-cycle stability, with a high capacity of 106.1 mAh g-1 at 2.0 A g-1 after 500 cycles and a high Coulombic efficiency of ∼100%. The proposed conductive MOFs with dual redox-active sites provide an efficient approach for constructing fast, stable, and high-capacity energy storage devices.

7.
Adv Mater ; 34(37): e2203835, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35900795

RESUMO

Resource-abundant metal (e.g., zinc) batteries feature intrinsic advantages of safety and sustainability. Their practical feasibility, however, is impeded by the poor reversibility of metal anodes, typically caused by the uncontrollable dendrite enlargement. Significant effort is exerted to completely prevent dendrites from forming, but this seems less effective at high current densities. Herein, this work presents an alternative dendrite regulation strategy of forming tiny, homogeneously distributed, and identical zinc dendrites by facet matching, which effectively avoids undesirable dendrite enlargement. Confirmed by multiscale theoretical screening and characterization, the regularly exposed Cu(111) facets at the ridges of a copper nanowire are capable of such dendrite regulation by forming a low-mismatched Zn(002)/Cu(111) interface. Consequently, reversible zinc electroplating/stripping is achieved at an unprecedentedly high rate of 100 mA cm-2 for over 30 000 cycles, corresponding to an accumulative areal capacity up to 30 Ah cm-2 . A full cell using this anode shows a high capacity of 308.3 mAh g-1 and a high capacity retention of 91.4% after 800 cycles. This strategy is also viable for magnesium and aluminum anodes, thus opening up a promising and universal avenue toward long-life and high-rate metal anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA