Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 99(1): 221-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25277412

RESUMO

Interest in sustainable development has led to efforts to replace petrochemical-based monomers with biomass-based ones. Itaconic acid, a C5-dicarboxylic acid, is a potential monomer for the chemical industry with many prospective applications. cis-aconitate decarboxylase (CadA) is the key enzyme of itaconate production, converting the citric acid cycle intermediate cis-aconitate into itaconate. Heterologous expression of cadA from Aspergillus terreus in Escherichia coli resulted in low CadA activities and production of trace amounts of itaconate on Luria-Bertani (LB) medium (<10 mg/L). CadA was primarily present as inclusion bodies, explaining the low activity. The activity was significantly improved by using lower cultivation temperatures and mineral medium, and this resulted in enhanced itaconate titres (240 mg/L). The itaconate titre was further increased by introducing citrate synthase and aconitase from Corynebacterium glutamicum and by deleting the genes encoding phosphate acetyltransferase and lactate dehydrogenase. These deletions in E. coli's central metabolism resulted in the accumulation of pyruvate, which is a precursor for itaconate biosynthesis. As a result, itaconate production in aerobic bioreactor cultures was increased up to 690 mg/L. The maximum yield obtained was 0.09 mol itaconate/mol glucose. Strategies for a further improvement of itaconate production are discussed.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas , Succinatos/metabolismo , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Aerobiose , Aspergillus/enzimologia , Aspergillus/genética , Reatores Biológicos , Carboxiliases/genética , Carboxiliases/metabolismo , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Clonagem Molecular , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/enzimologia , Deleção de Genes , L-Lactato Desidrogenase/genética , Dados de Sequência Molecular , Fosfato Acetiltransferase/genética , Análise de Sequência de DNA
2.
AMB Express ; 5(1): 61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26384341

RESUMO

Itaconic acid, an unsaturated C5-dicarboxylic acid, is a biobased building block for the polymer industry. The purpose of this study was to establish proof of principle for an anaerobic fermentation process for the production of itaconic acid by modification of the mixed acid fermentation pathway of E. coli. E. coli BW25113 (DE3) and the phosphate acetyltransferase (pta) and lactate dehydrogenase (ldhA) deficient strain E. coli BW25113 (DE3) Δpta-ΔldhA were used to study anaerobic itaconate production in E. coli. Heterologous expression of the gene encoding cis-aconitate decarboxylase (cadA) from A. terreus in E. coli BW25113 (DE3) did not result in itaconate production under anaerobic conditions, but 0.08 mM of itaconate was formed when the genes encoding citrate synthase (gltA) and aconitase (acnA) from Corynebacterium glutamicum were also expressed. The same amount was produced when cadA was expressed in E. coli BW25113 (DE3) Δpta-ΔldhA. The titre increased 8 times to 0.66 mM (1.2 % Cmol) when E. coli BW25113 (DE3) Δpta-ΔldhA also expressed gltA and acnA. In addition, this strain produced 8.5 mM (13 % Cmol) of glutamate. The use of a nitrogen-limited growth medium reduced the accumulation of glutamate by nearly 50 % compared to the normal medium, and also resulted in a more than 3-fold increase of the itaconate titre to 2.9 mM. These results demonstrated that E. coli has potential to produce itaconate and glutamate under anaerobic conditions, closing the redox balance by co-production of succinate or ethanol with H2 and CO2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA