RESUMO
In the last two decades, fisheries and fish industries by-products have started to be recovered for the extraction of type I collagen because of issues related to the extraction of traditional mammalian tissues. In this work, special attention has been paid to by-products from fish bred in aquaponic plants. The valorization of aquaponic fish wastes as sources of biopolymers would make the derived materials eco-friendlier and attractive in terms of profitability and cost effectiveness. Among fish species, Nile Tilapia is the second-most farmed species in the world and its skin is commonly chosen as a collagen extraction source. However, to the best of our knowledge, no studies have been carried out to investigate, in depth, the age-related differences in fish skin with the final aim of selecting the most advantageous fish size for collagen extraction. In this work, the impact of age on the structural and compositional properties of Tilapia skin was evaluated with the aim of selecting the condition that best lends itself to the extraction of type I collagen for biomedical applications, based on the known fact that the properties of the original tissue have a significant impact on those of the final product. Performed analysis showed statistically significant age-related differences. In particular, an increase in skin thickness (+110 µm) and of wavy-like collagen fiber bundle diameter (+3 µm) besides their organization variation was observed with age. Additionally, a preferred collagen molecule orientation along two specific directions was revealed, with a higher fiber orientation degree according to age. Thermal analysis registered a shift of the endothermic peak (+1.7 °C) and an increase in the enthalpy (+3.3 J/g), while mechanical properties were found to be anisotropic, with an age-dependent brittle behavior. Water (+13%) and ash (+0.6%) contents were found to be directly proportional with age, as opposed to protein (-8%) and lipid (-10%) contents. The amino acid composition revealed a decrease in the valine, leucine, isoleucine, and threonine content and an increase in proline and hydroxyproline. Lastly, fatty acids C14:0, C15:0, C16:1, C18:2n6c, C18:3n6, C18:0, C20:3n3, and C23:0 were revealed to be upregulated, while C18:1n9c was downregulated with age.
Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/metabolismo , Ciclídeos/metabolismo , Colágeno Tipo I/metabolismo , Ácidos Graxos/metabolismo , Colágeno/metabolismo , MamíferosRESUMO
In the present study, we have produced a sodium carboxymethylcellulose (CMC) hydrogel from a bacterial cellulose etherification reaction with chloroacetic acid in an alkaline medium. Bacterial cellulose (BC) was synthesized via economical and environmentally friendly methods using the Gluconacetobacter xylinus bacterium. After purification, freeze-drying, and milling, BC microparticles were dispersed in NaOH solution for different time periods before the etherification reaction. This has allowed the understanding of the alkalinization effect on BC modification. All synthesized CMC were soluble in water, and FTIR and XRD analyses confirmed the etherification reaction. The bath of BC in NaOH solution affects both molecular weight and degree of substitution. SEM analysis revealed the change of BC microstructure from fibrous-like to a smooth, uniform structure. The CMC-0 h allowed the production of crosslinked hydrogel after dehydrothermal treatment. Such hydrogel has been characterized rheologically and has shown a water absorption of 35 times its original weight. The optimization of the CMC produced from BC could pave the way for the production of ultrapure hydrogel to be applied in the healthcare and pharmaceutical industry.
Assuntos
Carboximetilcelulose Sódica , Hidrogéis , Carboximetilcelulose Sódica/química , Celulose/química , Hidróxido de Sódio , ÁguaRESUMO
DNA-encoded chemical libraries are often used for the discovery of ligands against protein targets of interest. These large collections of DNA-barcoded chemical compounds are typically screened by using affinity capture methodologies followed by PCR amplification and DNA sequencing procedures. However, the performance of individual steps in the selection procedures has been scarcely investigated, so far. Herein, the quantitative analysis of selection experiments, by using three ligands with different affinity to carbonic anhydraseâ IX as model compounds, is described. In the first set of experiments, quantitative PCR (qPCR) procedures are used to evaluate the recovery and selectivity for affinity capture procedures performed on different solid-phase supports, which are commonly used for library screening. In the second step, both qPCR and analysis of DNA sequencing results are used to assess the recovery and selectivity of individual carbonic anhydrase IX ligands in a library, containing 360 000 compounds. Collectively, this study reveals that selection procedures can be efficient for ligands with sub-micromolar dissociation constants to the target protein of interest, but also that selection performance dramatically drops if 104 copies per library member are used as the input.
Assuntos
Anidrase Carbônica IX/metabolismo , DNA/química , Enzimas Imobilizadas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Sulfonamidas/metabolismo , Descoberta de Drogas , Humanos , Ligantes , Reação em Cadeia da Polimerase , Ligação Proteica , Análise de Sequência de DNA , Bibliotecas de Moléculas Pequenas/química , Sulfonamidas/químicaRESUMO
Peripheral nerve regeneration is regulated through the coordinated spatio-temporal activation of multiple cellular pathways. In this work, an integrated proteomics and bioinformatics approach was employed to identify differentially expressed proteins at the injury-site of rat sciatic nerve at 20 days after damage. By a label-free liquid chromatography mass-spectrometry (LC-MS/MS) approach, we identified 201 differentially proteins that were assigned to specific canonical and disease and function pathways. These include proteins involved in cytoskeleton signaling and remodeling, acute phase response, and cellular metabolism. Metabolic proteins were significantly modulated after nerve injury to support a specific metabolic demand. In particular, we identified a group of proteins involved in lipid uptake and lipid storage metabolism. Immunofluorescent staining for acyl-CoA diacylglycerol acyltransferase 1 (DGAT1) and DAGT2 expression provided evidence for the expression and localization of these two isoforms in Schwann cells at the injury site in the sciatic nerve. This further supports a specific local regulation of lipid metabolism in peripheral nerve after damage.
Assuntos
Regeneração Nervosa/fisiologia , Doenças do Sistema Nervoso/metabolismo , Nervo Isquiático/metabolismo , Animais , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Diacilglicerol O-Aciltransferase/metabolismo , Feminino , Metabolismo dos Lipídeos/fisiologia , Proteômica/métodos , Ratos , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Transdução de Sinais/fisiologia , Espectrometria de Massas em Tandem/métodosRESUMO
Overweight and obesity are major health concerns worldwide, and are major predisposing factors for type 2 diabetes. This single-centre, Phase I, randomised, open-label, single-dose, 4-arm crossover, device-drug interaction study on 24 healthy volunteers with a body mass index of 25-40 kg/m2 tested the effect of a novel, nonsystemic, orally administered hydrogel (GS100) on the pharmacokinetics of an oral antidiabetic drug, metformin. When administered in both the fed and fasted states, the effect of GS100 on metformin pharmacokinetic characteristics was found to be similar to that of food. The type, frequency, and intensity of adverse events observed when GS100 was co-administered with metformin were similar to those observed with metformin alone. This study demonstrates that GS100 can be taken by patients receiving metformin, without altering the administration of metformin.
Assuntos
Hidrogéis/farmacocinética , Hipoglicemiantes/farmacocinética , Metformina/farmacocinética , Administração Oral , Adulto , Estudos Cross-Over , Diabetes Mellitus Tipo 2/tratamento farmacológico , Interações Medicamentosas , Jejum , Feminino , Voluntários Saudáveis , Humanos , Hidrogéis/administração & dosagem , Hipoglicemiantes/administração & dosagem , Masculino , Metformina/administração & dosagem , Pessoa de Meia-Idade , Obesidade/terapiaRESUMO
The present work is focused on the design of a bioactive chitosan-based scaffold functionalized with organic and inorganic signals to provide the biochemical cues for promoting stem cell osteogenic commitment. The first approach is based on the use of a sequence of 20 amino acids corresponding to a 68-87 sequence in knuckle epitope of BMP-2 that was coupled covalently to the carboxyl group of chitosan scaffold. Meanwhile, the second approach is based on the biomimetic treatment, which allows the formation of hydroxyapatite nuclei on the scaffold surface. Both scaffolds bioactivated with organic and inorganic signals induce higher expression of an early marker of osteogenic differentiation (ALP) than the neat scaffolds after 3 days of cell culture. However, scaffolds decorated with BMP-mimicking peptide show higher values of ALP than the biomineralized one. Nevertheless, the biomineralized scaffolds showed better cellular behaviour than neat scaffolds, demonstrating the good effect of hydroxyapatite deposits on hMSC osteogenic differentiation. At long incubation time no significant difference among the biomineralized and BMP-activated scaffolds was observed. Furthermore, the highest level of Osteocalcin expression (OCN) was observed for scaffold with BMP2 mimic-peptide at day 21. The overall results showed that the presence of bioactive signals on the scaffold surface allows an osteoinductive effect on hMSC in a basal medium, making the modified chitosan scaffolds a promising candidate for bone tissue regeneration.
Assuntos
Osso e Ossos/citologia , Quitosana/química , Materiais Revestidos Biocompatíveis , Compostos Inorgânicos/química , Compostos Orgânicos/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/fisiologia , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodosRESUMO
The interest in nanotechnology and the growing concern for the antibiotic resistance demonstrated by many microorganisms have recently stimulated many efforts in designing innovative biomaterials and substrates with antibacterial properties. Among the implemented strategies to control the incidence of infections associated with the use of biomedical device and implants, interesting routes are represented by the incorporation of bactericidal agents onto the surface of biomaterials for the prevention of bacterial adhesion and biofilm growth. Natural products and particularly bioactive metals such as silver, copper and zinc represent an interesting alternative for the development of advanced biomaterials with antimicrobial properties. This review presents an overview of recent progress in the modification of biomaterials as well as the most attractive techniques for the deposition of antimicrobial coatings on different substrates for biomedical application. Moreover, some research activities and results achieved by the authors in the development of antibacterial materials are also presented and discussed.
Assuntos
Antibacterianos/química , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Metais Pesados/farmacologia , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Cobre/farmacologia , Nanotecnologia , Prata/farmacologia , Propriedades de Superfície , Zinco/farmacologiaRESUMO
A porous collagen-based hydrogel scaffold was prepared in the presence of iron oxide nanoparticles (NPs) and was characterized by means of infrared spectroscopy and scanning electron microscopy. The hybrid scaffold was then loaded with fluorescein sodium salt as a model compound. The release of the hydrosoluble species was triggered and accurately controlled by the application of an external magnetic field, as monitored by fluorescence spectroscopy. The biocompatibility of the proposed matrix was also tested by the MTT assay performed on 3T3 cells. Cell viability was only slightly reduced when the cells were incubated in the presence of the collagen-NP hydrogel, compared to controls. The economicity of the chemical protocol used to obtain the paramagnetic scaffolds as well as their biocompatibility and the safety of the external trigger needed to induce the drug release suggest the proposed collagen paramagnetic matrices for a number of applications including tissue engeneering and drug delivery.
Assuntos
Colágeno , Compostos Férricos , Hidrogéis , Teste de Materiais , Nanopartículas/química , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Colágeno/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Fluoresceína/química , Fluoresceína/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , CamundongosRESUMO
Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.
Assuntos
Colágeno Tipo I , Pepsina A , Cavalos , Animais , Pepsina A/metabolismo , Colágeno/química , Colágenos Fibrilares/química , Tendões/químicaRESUMO
Soft tissues diseases significantly affect patients quality of life and usually require targeted, costly and sometimes constant interventions. With the average lifetime increase, a proportional increase of age-related soft tissues diseases has been witnessed. Due to this, the last two decades have seen a tremendous demand for minimally invasive one-step resolutive procedures. Intensive scientific and industrial research has led to the recognition of injectable formulations as a new advantageous approach in the management of complex diseases that are challenging to treat with conventional strategies. Among them, collagen-based products are revealed to be one of the most promising among bioactive biomaterials-based formulations. Collagen is the most abundant structural protein of vertebrate connective tissues and, because of its structural and non-structural role, is one of the most widely used multifunctional biomaterials in the health-related sectors, including medical care and cosmetics. Indeed, collagen-based formulations are historically considered as the "gold standard" and from 1981 have been paving the way for the development of a new generation of fillers. A huge number of collagen-based injectable products have been approved worldwide for clinical use and have routinely been introduced in many clinical settings for both aesthetic and regenerative surgery. In this context, this review article aims to be an update on the clinical outcomes of approved collagen-based injectables for both aesthetic and regenerative medicine of the last 20 years with an in-depth focus on their safety and effectiveness for the treatment of diseases of the integumental, gastrointestinal, musculoskeletal, and urogenital apparatus.
RESUMO
Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.
RESUMO
Water pollution is a major concern in our modern age. The contamination of water, as a valuable and often limited resource, affects both the environment and human health. Industrial processes such as food, cosmetics, and pharmaceutical production also contribute to this problem. Vegetable oil production, for example, generates a stable oil/water emulsion containing 0.5-5% oil, which presents a difficult waste disposal issue. Conventional treatment methods based on aluminum salts generate hazardous waste, highlighting the need for green and biodegradable coagulant agents. In this study, the efficacy of commercial chitosan, a natural polysaccharide derived from chitin deacetylation, has been evaluated as a coagulation agent for vegetable oil emulsions. The effect of commercial chitosan was assessed in relation to different surfactants (anionic, cationic, and nonpolar) and pH levels. The results demonstrate that chitosan is effective at concentrations as low as 300 ppm and can be reused, providing a cost-effective and sustainable solution for oil removal. The flocculation mechanism relies on the desolubilization of the polymer, which acts as a net to entrap the emulsion, rather than solely relying on electrostatic interactions with the particles. This study highlights the potential of chitosan as a natural and ecofriendly alternative to conventional coagulants for the remediation of oil-contaminated water.
RESUMO
Type I collagen physiological scaffold for tissue regeneration is considered one of the widely used biomaterials for tissue engineering and medical applications. It is hierarchically organized: five laterally staggered molecules are packed within fibrils, arranged into fascicles and bundles. The structural organization is correlated to the direction and intensity of the forces which can be loaded onto the tissue. For a tissue-specific regeneration, the required macro- and microstructure of a suitable biomaterial has been largely investigated. Conversely, the function of multiscale structural integrity has been much less explored but is crucial for scaffold design and application. In this work, collagen was extracted from different animal sources with protocols that alter its structure. Collagen of tendon shreds excised from cattle, horse, sheep and pig was structurally investigated by wide- and small-angle X-ray scattering techniques, at both molecular and supramolecular scales, and thermo-mechanically with thermal and load-bearing tests. Tendons were selected because of their resistance to chemical degradation and mechanical stresses. The multiscale structural integrity of tendons' collagen was studied in relation to the animal source, anatomic location and source for collagen extraction.
RESUMO
Vascularization is a highly conserved and considerably complex and precise process that is finely driven by endogenous regulatory processes at the tissue and systemic levels. However, it can reveal itself to be slow and inadequate for tissue repair and regeneration consequent to severe lesions/damages. Several biomaterial-based strategies were developed to support and enhance vasculogenesis by supplying pro-angiogenic agents. Several approaches were adopted to develop effective drug delivery systems for the controlled release of a huge variety of compounds. In this work, a microparticulate system was chosen to be loaded with the essential amino acid L-lysine, a molecule that has recently gained interest due to its involvement in pro-angiogenic, pro-regenerative, and anti-inflammatory mechanisms. Poly (lactic-co-glycolic acid), the most widely used FDA-approved biodegradable synthetic polymer for the development of drug delivery systems, was chosen due to its versatility and ability to promote neovascularization and wound healing. This study dealt with the development and the effectiveness evaluation of a PLGA-based microparticulate system for the controlled release of L-lysine. Therefore, in order to maximize L-lysine encapsulation efficiency and tune its release kinetics, the microparticle synthesis protocol was optimized by varying some processing parameters. All developed formulations were characterized from a morphological and physicochemical point of view. The optimized formulation was further characterized via the evaluation of its preliminary biological efficacy in vitro. The cellular and molecular studies revealed that the L-lysine-loaded PLGA microparticles were non-toxic, biocompatible, and supported cell proliferation and angiogenesis well by stimulating the expression of pro-angiogenic genes such as metalloproteinase-9, focal adhesion kinases, and different growth factors. Thus, this work showed the potential of delivering L-lysine encapsulated in PLGA microparticles as a cost-effective promoter system for angiogenesis enhancement and rapid healing.
RESUMO
Bio-based polymers are attracting great interest due to their potential for several applications in place of conventional polymers. In the field of electrochemical devices, the electrolyte is a fundamental element that determines their performance, and polymers represent good candidates for developing solid-state and gel-based electrolytes toward the development of full-solid-state devices. In this context, the fabrication and characterization of uncrosslinked and physically cross-linked collagen membranes are reported to test their potential as a polymeric matrix for the development of a gel electrolyte. The evaluation of the membrane's stability in water and aqueous electrolyte and the mechanical characterization demonstrated that cross-linked samples showed a good compromise in terms of water absorption capability and resistance. The optical characteristics and the ionic conductivity of the cross-linked membrane, after overnight dipping in sulfuric acid solution, demonstrated the potential of the reported membrane as an electrolyte for electrochromic devices. As proof of concept, an electrochromic device was fabricated by sandwiching the membrane (after sulfuric acid dipping) between a glass/ITO/PEDOT:PSS substrate and a glass/ITO/SnO2 substrate. The results in terms of optical modulation and kinetic performance of such a device demonstrated that the reported cross-linked collagen membrane could represent a valid candidate as a water-based gel and bio-based electrolyte for full-solid-state electrochromic devices.
RESUMO
The rising prevalence of obesity and metabolic disorders worldwide highlights the urgent need to find new long-term and clinically meaningful weight-loss therapies. Here, we evaluate the therapeutic potential and the mechanism of action of a biomimetic cellulose-based oral superabsorbent hydrogel (OSH). Treatment with OSH exerts effects on intestinal tissue and gut microbiota composition, functioning like a protective dynamic exoskeleton. It protects from gut barrier permeability disruption and induces rapid and consistent changes in the gut microbiota composition, specifically fostering Akkermansia muciniphila expansion. The mechanobiological, physical, and chemical structures of the gel are required for A. muciniphila growth. OSH treatment induces weight loss and reduces fat accumulation, in both preventative and therapeutic settings. OSH usage also prevents liver steatosis, immune infiltration, and fibrosis, limiting the progression of non-alcoholic fatty liver disease. Our work shows the potential of using OSH as a non-systemic mechanobiological approach to treat metabolic syndrome and its comorbidities.
Assuntos
Exoesqueleto Energizado , Hepatopatia Gordurosa não Alcoólica , Humanos , Hidrogéis/uso terapêutico , Biomimética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/prevenção & controle , Obesidade/tratamento farmacológicoRESUMO
Long-term therapeutic benefit of treatments for weight management in patients with overweight (also termed preobesity) or obesity may be limited by variable safety, tolerability, and efficacy profiles, and patient adherence to treatment regimens. There is a medical need for nonsystemic treatments that promote weight loss in patients with overweight or early obesity. This report reviews four different approaches of utilizing superabsorbent hydrogel technology for weight management at varying stages of preclinical and clinical development. The first is a nonsystemic, oral superabsorbent hydrogel created from naturally derived building blocks used in foods (cellulose-based), designed to mix homogenously with and change the properties of the ingested meal throughout the gastrointestinal tract (stomach and small intestine). This is the first-in-class to be cleared by the Food and Drug Administration (FDA) to aid in weight-management for adults with BMI of 25-40 kg/m2 in conjunction with diet and exercise. In contrast, the other three approaches in development utilize superabsorbent hydrogel technologies to support an intragastric balloon-like structure, solely occupying space in the stomach and displacing the meal: (1) a pufferfish-inspired device; (2) Epitomee, a pH-sensitive self-expanding hydrogel device; and (3) a light-degradable hydrogel used to control balloon deflation. These new approaches that utilize superabsorbent hydrogel technology offer a wide range of clinical applicability and have the potential to broaden the weight management treatment landscape. Over time, increasing the number of patients treated with superabsorbent hydrogel technologies will provide important information on long-term efficacy and safety.
RESUMO
Articular cartilage degeneration is still an unsolved issue owing to its weak repairing capabilities, which usually result in fibrocartilage tissue formation. This fibrous tissue lacks of structural and bio-mechanical properties, degrading over time. Currently, arthroscopic techniques and autologous transplantation are the most used clinical procedures. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Therefore, tissue engineering strategies aimed at selecting scaffolds that remarkably support the chondrogenic differentiation of human mesenchymal stem cells (hMSCs) could represent a promising solution, but they are still challenging for researchers. In this study, the influence of two different genipin (Gp) crosslinking routes on collagen (Coll)-based scaffolds in terms of hMSCs chondrogenic differentiation and biomechanical performances was investigated. Three-dimensional (3D) porous Coll scaffolds were fabricated by freeze-drying techniques and were crosslinked with Gp following a "two-step" and an in "bulk" procedure, in order to increase the physico-mechanical stability of the structure. Chondrogenic differentiation efficacy of hMSCs and biomechanical behavior under compression forces through unconfined stress-strain tests were assessed. Coll/Gp scaffolds revealed an isotropic and highly homogeneous pore distribution along with an increase in the stiffness, also supported by the increase in the Coll denaturation temperature (Td = 57-63°C) and a significant amount of Coll and GAG deposition during the 3 weeks of chondrogenic culture. In particular, the presence of Gp in "bulk" led to a more uniform and homogenous chondral-like matrix deposition by hMSCs if compared to the results obtained from the Gp "two-step" functionalization procedure.
Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Condrogênese , Colágeno/química , Humanos , Iridoides , Engenharia Tecidual/métodos , Alicerces Teciduais/químicaRESUMO
Collagen is one of the most widely used biomaterials in health-related sectors. The industrial production of collagen mostly relies on its extraction from mammals, but several issues limited its use. In the last two decades, marine organisms attracted interest as safe, abundant, and alternative source for collagen extraction. In particular, the possibility to valorize the huge quantity of fish industry waste and byproducts as collagen source reinforced perception of fish collagen as eco-friendlier and particularly attractive in terms of profitability and cost-effectiveness. Especially fish byproducts from eco-sustainable aquaponics production allow for fish biomass with additional added value and controlled properties over time. Among fish species, Oreochromis niloticus is one of the most widely bred fish in large-scale aquaculture and aquaponics systems. In this work, type I collagen was extracted from aquaponics-raised Tilapia skin and characterized from a chemical, physical, mechanical, and biological point of view in comparison with a commercially available analog. Performed analysis confirmed that the proprietary process optimized for type I collagen extraction allowed to isolate pure native collagen and to preserve its native conformational structure. Preliminary cellular studies performed with mouse fibroblasts indicated its optimal biocompatibility. All data confirmed the eligibility of the extracted Tilapia-derived native type I collagen as a biomaterial for healthcare applications.
RESUMO
Biological materials found in living organisms, many of which are proteins, feature a complex hierarchical organization. Type I collagen, a fibrous structural protein ubiquitous in the mammalian body, provides a striking example of such a hierarchical material, with peculiar architectural features ranging from the amino acid sequence at the nanoscale (primary structure) up to the assembly of fibrils (quaternary structure) and fibers, with lengths of the order of microns. Collagen plays a dominant role in maintaining the biological and structural integrity of various tissues and organs, such as bone, skin, tendons, blood vessels, and cartilage. Thus, "artificial" collagen-based fibrous assemblies, endowed with appropriate structural properties, represent ideal substrates for the development of devices for tissue engineering applications. In recent years, with the ultimate goal of developing three-dimensional scaffolds with optimal bioactivity able to promote both regeneration and functional recovery of a damaged tissue, numerous studies focused on the capability to finely modulate the scaffold architecture at the microscale and the nanoscale in order to closely mimic the hierarchical features of the extracellular matrix and, in particular, the natural patterning of collagen. All of these studies clearly show that the accurate characterization of the collagen structure at the submolecular and supramolecular levels is pivotal to the understanding of the relationships between the nanostructural/microstructural properties of the fabricated scaffold and its macroscopic performance. Several studies also demonstrate that the selected processing, including any crosslinking and/or sterilization treatments, can strongly affect the architecture of collagen at various length scales. The aim of this review is to highlight the most recent findings on the development of collagen-based scaffolds with optimized properties for tissue engineering. The optimization of the scaffolds is particularly related to the modulation of the collagen architecture, which, in turn, impacts on the achieved bioactivity.