Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232883

RESUMO

Pain is a worldwide public health problem and its treatment is still a challenge since clinically available drugs do not completely reverse chronic painful states or induce undesirable effects. Crotalphine is a 14 amino acids synthetic peptide that induces a potent and long-lasting analgesic effect on acute and chronic pain models, peripherally mediated by the endogenous release of dynorphin A and the desensitization of the transient receptor potential ankyrin 1 (TRPA1) receptor. However, the effects of crotalphine on the central nervous system (CNS) and the signaling pathway have not been investigated. Thus, the central effect of crotalphine was evaluated on the partial sciatic nerve ligation (PSNL)-induced chronic neuropathic pain model. Crotalphine (100 µg/kg, p.o.)-induced analgesia on the 14th day after surgery lasting up to 24 h after administration. This effect was prevented by intrathecal administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists. Besides that, crotalphine-induced analgesia was reversed by CTOP, nor-BNI, and naltrindole, antagonists of mu, kappa, and delta-opioid receptors, respectively, and also by the specific antibodies for ß-endorphin, dynorphin-A, and met-enkephalin. Likewise, the analgesic effect of crotalphine was blocked by the intrathecal administration of minocycline, an inhibitor of microglial activation and proliferation. Additionally, crotalphine decreased the PSNL-induced IL-6 release in the spinal cord. Importantly, in vitro, crotalphine inhibited LPS-induced CD86 expression and upregulated CD206 expression in BV-2 cells, demonstrating a polarization of microglial cells towards the M2 phenotype. These results demonstrated that crotalphine, besides activating opioid and cannabinoid analgesic systems, impairs central neuroinflammation, confirming the neuromodulatory mechanism involved in the crotalphine analgesic effect.


Assuntos
Analgesia , Canabinoides , Neuralgia , Aminoácidos/metabolismo , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/metabolismo , Anquirinas/metabolismo , Antagonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/uso terapêutico , Dinorfinas/metabolismo , Encefalina Metionina/metabolismo , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Microglia/metabolismo , Minociclina/uso terapêutico , Neuralgia/metabolismo , Peptídeos , Fenótipo , Receptores Opioides/metabolismo , Medula Espinal , beta-Endorfina/metabolismo
2.
Blood Cells Mol Dis ; 92: 102604, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517295

RESUMO

Patients with COVID-19 can be asymptomatic or present mild to severe symptoms, leading to respiratory and cardiovascular complications and death. Type 2 diabetes mellitus (T2DM) and obesity are considered risk factors for COVID-19 poor prognosis. In parallel, COVID-19 severe patients exhibit dyslipidemia and alterations in neutrophil to lymphocyte ratio (NLR) associated with disease severity and mortality. To investigate whether such alterations are caused by the infection or results from preexisting comorbidities, this work analyzed dyslipidemia and the hemogram profile of COVID-19 patients according to the severity and compared with patients without T2DM or obesity comorbidities. Dyslipidemia, with a marked decrease in HDL levels, and increased NLR accompanied the disease severity, even in non-T2DM and non-obese patients, indicating that COVID-19 causes the observed alterations. Because decreased hemoglobin is involved in COVID-19 severity, and hemoglobin concentration is associated with metabolic diseases, the erythrogram of patients was also evaluated. We verified a drop in hemoglobin and erythrocyte number in severe patients, independently of T2DM and obesity, which may explain in part the need for artificial ventilation in severe cases. Thus, the control of such parameters (especially HDL levels, NLR, and hemoglobin concentration) could be a good strategy to prevent COVID-19 complications and death.


Assuntos
Aterosclerose/etiologia , COVID-19/complicações , Dislipidemias/etiologia , Contagem de Leucócitos , SARS-CoV-2 , Adulto , Idoso , Anemia/epidemiologia , Anemia/etiologia , Aterosclerose/epidemiologia , COVID-19/sangue , COVID-19/terapia , Comorbidade , Diabetes Mellitus Tipo 2/epidemiologia , Dislipidemias/epidemiologia , Contagem de Eritrócitos , Hemoglobinas/análise , Humanos , Hipóxia/etiologia , Hipóxia/terapia , Lipoproteínas HDL/sangue , Contagem de Linfócitos , Pessoa de Meia-Idade , Neutrófilos , Obesidade/epidemiologia , Respiração Artificial , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença
3.
Free Radic Biol Med ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39481766

RESUMO

Aldehyde dehydrogenase-2 deficiency (ALDH2*2) found in 36% of Han Chinese, affects approximately 8% of the world population. ALDH2 is a mitochondrial key enzyme in detoxifying reactive aldehydes to less reactive forms. Studies demonstrate a potential link between ALDH2*2 mutation and neurodegenerative diseases. Multiple sclerosis (MS) is an incurable and disabling neurodegenerative autoimmune disease that induces motor, and cognitive impairment, and hypersensitivity, including chronic pain. Accumulating evidence suggests that reactive aldehydes, such as 4-hydroxynonenal (4-HNE), contribute to MS pathogenesis. Here, using knock-in mice carrying the inactivating point mutation in ALDH2, identical to the mutation found in Han Chinese, we showed that the impairment in ALDH2 activity heightens motor disabilities, and hypernociception induced by experimental autoimmune encephalomyelitis (EAE). The deleterious clinical signs are followed by glial cell activation in the spinal cord and increased 4-HNE levels in the spinal cord and serum. Importantly, the pharmacological ALDH2 activation by Alda-1 ameliorates EAE-induced hypernociception and motor impairment in both wild-type and ALDH2*2KI mice. Reduced hypernociception was associated with less early growth response protein 1 (EGR1), neuronal and glial activation, and reactive aldehyde accumulation in the spinal cord and serum. Taken together, our data suggest that the mitochondrial enzyme ALDH2 plays a role in regulating clinical, cellular, and molecular responses associated with EAE. This indicates that ALDH2 could serve as a molecular target for MS control, with ALDH2 activators, like Alda-1 as potential neuroprotective candidates. Furthermore, ALDH2*2 carriers may be at increased risk of developing more accentuated MS symptoms.

4.
J Clin Invest ; 132(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227694

RESUMO

Neuropathic pain is one of the most important clinical consequences of injury to the somatosensory system. Nevertheless, the critical pathophysiological mechanisms involved in neuropathic pain development are poorly understood. In this study, we found that neuropathic pain is abrogated when the kynurenine metabolic pathway (KYNPATH) initiated by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is ablated pharmacologically or genetically. Mechanistically, it was found that IDO1-expressing dendritic cells (DCs) accumulated in the dorsal root leptomeninges and led to an increase in kynurenine levels in the spinal cord. In the spinal cord, kynurenine was metabolized by kynurenine-3-monooxygenase-expressing astrocytes into the pronociceptive metabolite 3-hydroxykynurenine. Ultimately, 3-hydroxyanthranilate 3,4-dioxygenase-derived quinolinic acid formed in the final step of the canonical KYNPATH was also involved in neuropathic pain development through the activation of the glutamatergic N-methyl-D-aspartate receptor. In conclusion, these data revealed a role for DCs driving neuropathic pain development through elevation of the KYNPATH. This paradigm offers potential new targets for drug development against this type of chronic pain.


Assuntos
Cinurenina , Neuralgia , Animais , Camundongos , Cinurenina/metabolismo , Ácido Quinolínico/metabolismo , Redes e Vias Metabólicas , Células Dendríticas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo
5.
Front Immunol ; 12: 779473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185861

RESUMO

Bothrops jararaca venom (BjV) can induce mast cell degranulation. In order to investigate the role of mast cells and the interference of the host genetic background in the inflammation induced by BjV, we have used mouse strains selected for maximal (AIRmax) or minimal (AIRmin) acute inflammatory response (AIR). Mice were pretreated with an inhibitor of mast cell degranulation, cromolyn (CROM), and injected in footpads or intraperitoneally (i.p.) with BjV. Pain was measured with von Frey hairs, cell migration in the peritoneum by flow cytometry, and reactive oxygen species (ROS) production by chemiluminescence assays. The nociceptive response to BjV was higher in AIRmax than AIRmin mice; however, this difference was abolished by pretreatment with CROM. BjV induced peritoneal neutrophil (CD11b+ GR-1+) infiltration and ROS secretion in AIRmax mice only, which were partially inhibited by CROM. Our findings evidence a role for mast cells in pain, neutrophil migration, and ROS production triggered by BjV in AIRmax mice that are more susceptible to the action of BjV.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Movimento Celular , Venenos de Crotalídeos/efeitos adversos , Inflamação/induzido quimicamente , Mastócitos , Camundongos , Dor , Espécies Reativas de Oxigênio
6.
Toxins (Basel) ; 13(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34822611

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of inflammatory and autoimmune origin, which induces sensory and progressive motor impairments, including pain. Cells of the immune system actively participate in the pathogenesis and progression of MS by inducing neuroinflammation, tissue damage, and demyelination. Crotalphine (CRO), a structural analogue to a peptide firstly identified in Crotalus durissus terrificus snake venom, induces analgesia by endogenous opioid release and type 2 cannabinoid receptor (CB2) activation. Since CB2 activation downregulates neuroinflammation and ameliorates symptoms in mice models of MS, it was presently investigated whether CRO has a beneficial effect in the experimental autoimmune encephalomyelitis (EAE). CRO was administered on the 5th day after immunization, in a single dose, or five doses starting at the peak of disease. CRO partially reverted EAE-induced mechanical hyperalgesia and decreased the severity of the clinical signs. In addition, CRO decreases the inflammatory infiltrate and glial cells activation followed by TNF-α and IL-17 downregulation in the spinal cord. Peripherally, CRO recovers the EAE-induced impairment in myelin thickness in the sciatic nerve. Therefore, CRO interferes with central and peripheral neuroinflammation, opening perspectives to MS control.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Dor/tratamento farmacológico , Peptídeos/farmacologia , Analgésicos/farmacologia , Animais , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Hiperalgesia/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/fisiopatologia , Receptor CB2 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo
7.
Mol Neurobiol ; 56(8): 5715-5728, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30674034

RESUMO

Small nerve fibers that bind the isolectin B4 (IB4+ C-fibers) are a subpopulation of primary afferent neurons that are involved in nociceptive sensory transduction and do not express the neuropeptides substance P and calcitonin-gene related peptide (CGRP). Several studies have attempted to elucidate the functional role of IB4+-nociceptors in different models of pain. However, a functional characterization of the non-peptidergic nociceptors in mediating mechanical inflammatory hypersensitivity in mice is still lacking. To this end, in the present study, the neurotoxin IB4-Saporin (IB4-Sap) was employed to ablate non-peptidergic C-fibers. Firstly, we showed that intrathecal (i.t.) administration of IB4-Sap in mice depleted non-peptidergic C-fibers, since it decreased the expression of purinoceptor 3 (P2X3) and transient receptor potential cation channel subfamily V member 1 (TRPV1) in the dorsal root ganglia (DRGs) as well as IB4 labelling in the spinal cord. Non-peptidergic C-fibers depletion did not alter the mechanical nociceptive threshold, but it inhibited the mechanical inflammatory hypersensitivity induced by glial cell-derived neurotrophic factor (GDNF), but not nerve growth factor (NGF). Depletion of non-peptidergic C-fibers abrogated mechanical inflammatory hypersensitivity induced by carrageenan. Finally, it was found that the inflammatory mediators PGE2 and epinephrine produced a mechanical inflammatory hypersensitivity that was also blocked by depletion of non-peptidergic C-fibers. These data suggest that IB4-positive nociceptive nerve fibers are not involved in normal mechanical nociception but are sensitised by inflammatory stimuli and play a crucial role in mediating mechanical inflammatory hypersensitivity.


Assuntos
Hipersensibilidade/patologia , Inflamação/patologia , Nociceptores/patologia , Peptídeos/metabolismo , Animais , Dinoprostona/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Hipersensibilidade/complicações , Hipersensibilidade/fisiopatologia , Inflamação/complicações , Inflamação/fisiopatologia , Lectinas/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Fibras Nervosas Amielínicas/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Dor/complicações , Dor/fisiopatologia , Saporinas/farmacologia
8.
Sci Rep ; 6: 26955, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27230787

RESUMO

Peripheral neuropathic pain is a consequence of an injury/disease of the peripheral nerves. The mechanisms involved in its pathophysiology are not entirely understood. To better understand the mechanisms involved in the development of peripheral nerve injury-induced neuropathic pain, more experimental models are required. Here, we developed a novel peripheral neuropathic pain model in mice by using a minimally invasive surgery and medial plantar nerve ligation (MPNL). After MPNL, mechanical allodynia was established, and mice quickly recovered from the surgery without any significant motor impairment. MPNL causes an increased expression of ATF-3 in the sensory neurons. At 14 days after surgery, gabapentin was capable of reversing the mechanical allodynia, whereas anti-inflammatory drugs and opioids were ineffective. MPNL-induced neuropathic pain was mediated by glial cells activation and the production of TNF-α and IL-6 in the spinal cord. These results indicate MPNL as a reasonable animal model for the study of peripheral neuropathic pain, presenting analgesic pharmacological predictivity to clinically used drugs. The results also showed molecular phenotypic changes similar to other peripheral neuropathic pain models, with the advantage of a lack of motor impairment. These features indicate that MPNL might be more appropriate for the study of neuropathic pain than classical models.


Assuntos
Modelos Animais de Doenças , Hiperalgesia/fisiopatologia , Atividade Motora/fisiologia , Neuralgia/fisiopatologia , Nervo Tibial/fisiopatologia , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Aminas/farmacologia , Analgésicos/farmacologia , Animais , Ácidos Cicloexanocarboxílicos/farmacologia , Gabapentina , Regulação da Expressão Gênica , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/prevenção & controle , Interleucina-6/genética , Interleucina-6/metabolismo , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Nervo Tibial/efeitos dos fármacos , Nervo Tibial/lesões , Nervo Tibial/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA