Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(6): e2350903, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38576111

RESUMO

We induced systemic sclerosis (SSc)-like disease in both wild-type and Dnase1l3-deficient mice using two distinct approaches involving bleomycin and hypochlorous acid injections. Our observations revealed that the deficiency in DNASE1L3 did not affect tissue fibrosis or inflammation caused by these treatments. Despite the association of single nucleotide polymorphisms in humans with SSc pathogenesis, our study demonstrates that DNASE1L3 is dispensable in two inducible murine models of SSc-like pathogenesis.


Assuntos
Bleomicina , Modelos Animais de Doenças , Endodesoxirribonucleases , Camundongos Knockout , Escleroderma Sistêmico , Animais , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/imunologia , Camundongos , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Humanos , Ácido Hipocloroso , Fibrose , Camundongos Endogâmicos C57BL
2.
J Immunol ; 203(6): 1665-1674, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31434708

RESUMO

EBV infects and immortalizes B cells in vitro and in vivo. It is the causative agent of most immune deficiency-related lymphoproliferative disorders and is associated with various lymphomas. EBV latency III-transformed B cells are known to express two immunosuppressive molecules, IL-10 and PD-L1, two characteristics of regulatory B cells (Bregs). In this study, we show that, in addition to secretion of the Breg immunosuppressive cytokines IL-10, IL-35, and TGF-ß1, EBV latency III-transformed B cells were able to repress proliferation of their autologous T cells preactivated by CD2, CD3, and CD28. This inhibitory effect was likely caused by CD4+ T cells because EBV latency III-transformed B cells induced a strong proliferation of isolated autologous CD8 T cells. Indeed, EBV was able to promote expansion of autologous FOXP3+ CD39high CTLA4+, Helios+, GITR+, LAG3+ CD4 T cells (i.e., regulatory T cells [Tregs]). Two types of Tregs were induced: unconventional CD25neg and conventional CD25pos Tregs. These Tregs expressed both the latency-associated peptide (LAP) and the PD-1 receptor, two markers of functional Tregs. Expansion of both Treg subtypes depended on PD-L1, whose expression was under the control of LMP1, the main EBV oncogene. These results demonstrate that, like Bregs, EBV latency III-transformed B cells exhibit strong immunoregulatory properties. These data provide clues to the understanding of how after EBV primo-infection, EBV-proliferating B cells can survive in an aggressive immunological environment and later emerge to give rise to EBV-associated B cell lymphomas such as in elderly patients.


Assuntos
Linfócitos B/imunologia , Antígeno B7-H1/imunologia , Herpesvirus Humano 4/imunologia , Linfócitos T Reguladores/imunologia , Latência Viral/imunologia , Antígenos CD/imunologia , Apirase/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/imunologia , Linhagem Celular , Fatores de Transcrição Forkhead/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Humanos , Subunidade alfa de Receptor de Interleucina-2/imunologia
3.
Methods Mol Biol ; 2618: 173-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36905517

RESUMO

Dendritic cells (DCs) are antigen-presenting cells (APCs) that shape innate and adaptive immunity. There are multiple subsets of DCs distinguished according to their phenotype and functional specialization. DCs are present in lymphoid organs and across multiple tissues. However, their frequency and numbers at these sites are very low making their functional study difficult. Multiple protocols have been developed to generate DCs in vitro from bone marrow progenitors, but they do not fully recapitulate DC complexity found in vivo. Therefore, directly amplifying endogenous DCs in vivo appears as an option to overcome this specific caveat. In this chapter, we describe a protocol to amplify murine DCs in vivo by the injection of a B16 melanoma cell line expressing the trophic factor FMS-like tyrosine kinase 3 ligand (Flt3L). We have also compared two methods of magnetic sorting of amplified DCs, both giving high yields of total murine DCs, but different representation of the main DC subsets found in vivo.


Assuntos
Células Dendríticas , Proteínas de Membrana , Camundongos , Animais , Proteínas de Membrana/metabolismo , Baço/metabolismo
5.
Front Immunol ; 12: 629922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717156

RESUMO

Detection of microbial nucleic acids by the innate immune system is mediated by numerous intracellular nucleic acids sensors. Upon the detection of nucleic acids these sensors induce the production of inflammatory cytokines, and thus play a crucial role in the activation of anti-microbial immunity. In addition to microbial genetic material, nucleic acid sensors can also recognize self-nucleic acids exposed extracellularly during turn-over of cells, inefficient efferocytosis, or intracellularly upon mislocalization. Safeguard mechanisms have evolved to dispose of such self-nucleic acids to impede the development of autoinflammatory and autoimmune responses. These safeguard mechanisms involve nucleases that are either specific to DNA (DNases) or RNA (RNases) as well as nucleic acid editing enzymes, whose biochemical properties, expression profiles, functions and mechanisms of action will be detailed in this review. Fully elucidating the role of these enzymes in degrading and/or processing of self-nucleic acids to thwart their immunostimulatory potential is of utmost importance to develop novel therapeutic strategies for patients affected by inflammatory and autoimmune diseases.


Assuntos
Autoimunidade/imunologia , Autoimunidade/fisiologia , Imunidade Inata/imunologia , Imunidade Inata/fisiologia , Ácidos Nucleicos/imunologia , Animais , Doenças Autoimunes , Desoxirribonucleases/imunologia , Humanos , Ribonucleases/imunologia
6.
Front Immunol ; 11: 624256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574823

RESUMO

Obesity and overweight are a global health problem affecting almost one third of the world population. There are multiple complications associated with obesity including metabolic syndrome that commonly lead to development of type II diabetes and non-alcoholic fatty liver disease. The development of metabolic syndrome and severe complications associated with obesity is attributed to the chronic low-grade inflammation that occurs in metabolic tissues such as the liver and the white adipose tissue. In recent years, nucleic acids (mostly DNA), which accumulate systemically in obese individuals, were shown to aberrantly activate innate immune responses and thus to contribute to metabolic tissue inflammation. This minireview will focus on (i) the main sources and forms of nucleic acids that accumulate during obesity, (ii) the sensing pathways required for their detection, and (iii) the key cellular players involved in this process. Fully elucidating the role of nucleic acids in the induction of inflammation induced by obesity would promote the identification of new and long-awaited therapeutic approaches to limit obesity-mediated complications.


Assuntos
Tecido Adiposo/imunologia , DNA/imunologia , Síndrome Metabólica/imunologia , Obesidade/imunologia , Transdução de Sinais/imunologia , Tecido Adiposo/patologia , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Síndrome Metabólica/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA