Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Opt Lett ; 41(21): 5114-5117, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27805704

RESUMO

We report on the generation of coherent mid-infrared radiation around 5.85 µm by difference frequency generation (DFG) of a continuous-wave Nd:YAG laser at 1064 nm and a diode laser at 1301 nm in an orientation-patterned gallium phosphide (OP-GaP) crystal. We provide the first characterization of the linear, thermo-optic, and nonlinear properties of OP-GaP in a DFG configuration. Moreover, by comparing the experimental efficiency to Gaussian beam DFG theory, we derive an effective nonlinear coefficient d=17(3) pm/V for first-order quasi-phase-matched OP-GaP. The temperature and signal wavelength tuning curves are in qualitative agreement with theoretical modeling.

2.
Sensors (Basel) ; 16(2): 238, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26901199

RESUMO

The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

3.
Phys Chem Chem Phys ; 14(41): 14344-53, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23008835

RESUMO

The reactivity of mass-selected V(4)O(10)(-) cluster anions towards sulphur dioxide is investigated in an ion trap under multi-collision conditions. Gas phase reaction kinetics are studied as a function of temperature (T(R) = 150-275 K). The binding energy of SO(2) to V(4)O(10)(-) is obtained by analyzing the experimental low pressure rate constants, employing the Lindemann energy transfer model for association reactions in conjunction with statistical RRKM theory. In addition, infrared multiple photon dissociation spectroscopy is used in conjunction with density functional theory for the structural assignment of the [V(4)O(10)(-), SO(2)] complex, revealing a square pyramidal structure with the SO(2) molecule incorporated in the vanadium oxide framework. Energy profiles are calculated for the reaction between V(4)O(10)(-) and V(6)O(15)(-) with SO(2). Whereas the transition structures along the reaction pathway of V(4)O(10)(-) with SO(2) have energies below those of the separated partners, the reaction of V(6)O(15)(-) with SO(2) proceeds via a transition structure with energy higher than the educts. The role of cluster size and composition is investigated by studying the reaction kinetics of larger (V(6)O(15)(-) and V(8)O(20)(-)) and titanium doped (V(3)TiO(10)(-) and V(2)Ti(2)O(10)(-)) vanadium oxide clusters with SO(2). The observed cluster size and composition dependencies are discussed.

4.
Phys Chem Chem Phys ; 14(26): 9377-88, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22499393

RESUMO

We present gas phase vibrational spectra of the trinuclear vanadium oxide cations V(3)O(6)(+)·He(1-4), V(3)O(7)(+)·Ar(0,1), and V(3)O(8)(+)·Ar(0,2) between 350 and 1200 cm(-1). Cluster structures are assigned based on a comparison of the experimental and simulated IR spectra. The latter are derived from B3LYP/TZVP calculations on energetically low-lying isomers identified in a rigorous search of the respective configurational space, using higher level calculations when necessary. V(3)O(7)(+) has a cage-like structure of C(3v) symmetry. Removal or addition of an O-atom results in a substantial increase in the number of energetically low-lying structural isomers. V(3)O(8)(+) also exhibits the cage motif, but with an O(2) unit replacing one of the vanadyl oxygen atoms. A chain isomer is found to be most stable for V(3)O(6)(+). The binding of the rare gas atoms to V(3)O(6-8)(+) clusters is found to be strong, up to 55 kJ/mol for Ar, and markedly isomer-dependent, resulting in two interesting effects. First, for V(3)O(7)(+)·Ar and V(3)O(8)(+)·Ar an energetic reordering of the isomers compared to the bare ion is observed, making the ring motif the most stable one. Second, different isomers bind different number of rare gas atoms. We demonstrate how both effects can be exploited to isolate and assign the contributions from multiple isomers to the vibrational spectrum. The present results exemplify the structural variability of vanadium oxide clusters, in particular, the sensitivity of their structure on small perturbations in their environment.

5.
Chemphyschem ; 12(10): 1799-807, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21344604

RESUMO

Polar molecules in selected quantum states can be guided, decelerated, and trapped using electric fields created by microstructured electrodes on a chip. Herein we explore how transitions between two of these quantum states can be induced while the molecules are on the chip. We use CO (a(3) Π(1) , v=0) molecules, prepared in the J=1 rotational level, and induce the J=2←J=1 rotational transition with narrow-band sub-THz (mm-wave) radiation. First, the mm-wave source is characterized using CO molecules in a freely propagating molecular beam, and both Rabi cycling and rapid adiabatic passage are examined. Then we demonstrate that the mm-wave radiation can be coupled to CO molecules that are less than 50 µm above the chip. Finally, CO molecules are guided in the J=1 level to the center of the chip where they are pumped to the J=2 level, recaptured, and guided off the chip.

6.
Phys Chem Chem Phys ; 13(42): 18830-4, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21779581

RESUMO

Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.

7.
Phys Chem Chem Phys ; 12(42): 13907-13, 2010 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-20852821

RESUMO

The geometric and electronic structure of the Au(6)Y(+) cation is studied by gas phase vibrational spectroscopy combined with density functional theory calculations. The infrared photodissociation spectrum of Au(6)Y(+)·Ne is measured in the 95-225 cm(-1) energy range and exhibits two characteristic absorption bands at 181 cm(-1) and 121 cm(-1). Based on DFT/BP86 quantum chemical calculations, the infrared spectrum is assigned to the lowest energy species found, an eclipsed C(3v) geometry. The 3D structure of Au(6)Y(+) is considerably different from those previously found for both the neutral Au(6)Y (quasi-planar circular geometry) and the anionic Au(6)Y(-) (planar D(6h) symmetry). The different geometries are related to different electronic structures in agreement with 2D and 3D phenomenological shell models for metal clusters.

8.
J Am Chem Soc ; 130(45): 15143-9, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-18855393

RESUMO

The vibrational spectroscopy of the electronically closed-shell (Al 2O 3) n (AlO) (+) cations with n = 1-4 is studied in the 530-1200 cm (-1) range by infrared predissociation spectroscopy of the corresponding ion-He atom complexes in combination with quantum chemical calculations. In all cases we find, assisted by a genetic algorithm, global minimum structures that differ considerably from those derived from known modifications of bulk alumina. The n = 1 and n = 4 clusters exhibit an exceptionally stable conical structure of C 3 v symmetry, whereas for n = 2 and n = 3, multiple isomers of lower symmetry and similar energy may contribute to the recorded spectra. A blue shift of the highest energy absorption band is observed with increasing cluster size and attributed to a shortening of Al-O bonds in the larger clusters. This intense band is assigned to vibrational modes localized on the rim of the conical structures for n = 1 and n = 4 and may aid in identifying similar, highly symmetric structures in larger ions.

12.
Phys Chem Chem Phys ; 10(27): 3992-4005, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18597013

RESUMO

The vibrational spectra of vanadium oxide anions ranging from V(2)O(6)(-) to V(8)O(20)(-) are studied in the region from 555 to 1670 cm(-1) by infrared multiple photon photodissociation (IRMPD) spectroscopy. The cluster structures are assigned and structural trends identified by comparison of the experimental IRMPD spectra with simulated linear IR absorption spectra derived from density functional calculations, aided by energy calculations at higher levels of theory. Overall, the IR absorption of the V(m)O(n)(-) clusters can be grouped in three spectral regions. The transitions of (i) superoxo, (ii) vanadyl and (iii) V-O-V and V-O single bond modes are found at approximately 1100 cm(-1), 1020 to 870 cm(-1), and 950 to 580 cm(-1), respectively. A structural transition from open structures, including at least one vanadium atom forming two vanadyl bonds, to caged structures, with only one vanadyl bond per vanadium atom, is observed in-between tri- and tetravanadium oxide anions. Both the closed shell (V(2)O(5))(2,3)VO(3)(-) and open shell (V(2)O(5))(2-4)(-) anions prefer cage-like structures. The (V(2)O(5))(3,4)(-) anions have symmetry-broken minimum energy structures (C(s)) connected by low-energy transition structures of C(2v) symmetry. These double well potentials for V-O-V modes lead to IR transitions substantially red-shifted from their harmonic values. For the oxygen rich clusters, the IRMPD spectra prove the presence of a superoxo group in V(2)O(7)(-), but the absence of the expected peroxo group in V(4)O(11)(-). For V(4)O(11)(-), use of a genetic algorithm was necessary for finding a non-intuitive energy minimum structure with sufficient agreement between experiment and theory.


Assuntos
Ânions/química , Óxidos/química , Compostos de Vanádio/química , Simulação por Computador , Modelos Químicos , Estrutura Molecular
13.
Phys Chem Chem Phys ; 10(11): 1502-6, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18327305

RESUMO

The first gas-phase infrared spectra of silicon monoxide cations (SiO)(n)(+), n = 3-5, using multiple photon dissociation in the 550-1250 cm(-1) frequency range, are reported. All clusters studied here fragment via loss of a neutral SiO unit. The experimental spectra are compared to simulated linear absorption spectra from calculated low energy isomers for each cluster. This analysis indicates that a "ring" isomer is the primary contributor to the (SiO)(3)(+) spectrum, that the (SiO)(4)(+) spectrum results from two close-lying bicyclic ring isomers, and that the (SiO)(5)(+) spectrum is from a bicyclic ring with a central, fourfold-coordinated Si atom. Experiment and theory indicate that the energies and energetic orderings of (SiO)(n)(+) isomers differ from those for neutral (SiO)(n) clusters.


Assuntos
Nanopartículas/química , Óxidos/química , Fótons , Compostos de Silício/química , Silício/química , Adsorção , Algoritmos , Cátions/química , Isomerismo , Nanopartículas/análise , Óxidos/análise , Compostos de Silício/análise , Espectrofotometria Infravermelho/métodos
14.
Chemphyschem ; 8(11): 1640-7, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17607689

RESUMO

The infrared spectra of the binary vanadium oxide cluster anions V(4)O(9)(-) and V(4)O(10)(-) and of the related methoxo clusters V(4)O(9)(OCH(3))(-) and V(4)O(8)(OCH(3))(2)(-) are recorded in the gas phase by photodissociation of the mass-selected ions using an infrared laser. For the oxide clusters V(4)O(9)(-) and V(4)O(10)(-), the bands of the terminal vanadyl oxygen atoms, nu(V-O(t)), and of the bridging oxygen atoms, nu(V-O(b)-V), are identified clearly. The clusters in which one or two of the oxo groups are replaced by methoxo ligands show additional absorptions which are assigned to the C-O stretch, nu(C-O). Density functional calculations are used as a complement for the experimental studies and the interpretation of the infrared spectra. The results depend in an unusual way on the functional employed (BLYP versus B3LYP), which is due to the presence of both V-O(CH(3)) single and V=O double bonds as terminal bonds and to the strong multireference character of the latter.

15.
J Chem Phys ; 126(19): 191105, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17523785

RESUMO

Infrared multiple photon dissociation spectra for size-selected water cluster anions (H2O)(n)(-), n=15-50, are presented covering the frequency range of 560-1820 cm(-1). The cluster ions are trapped and cooled by collisions with ambient He gas at 20 K, with the goal of defining the cluster temperature better than in previous investigations of these species. Signal is seen in two frequency regions centered around 700 and 1500-1650 cm(-1), corresponding to water librational and bending motions, respectively. The bending feature associated with a double-acceptor water molecule binding to the excess electron is clearly seen up to n=35, but above n=25; this feature begins to blueshift and broadens, suggesting a more delocalized electron binding motif for the larger clusters in which the excess electron interacts with multiple water molecules.

16.
J Chem Phys ; 125(11): 111102, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16999457

RESUMO

We report the first infrared spectra of multiply-charged anions in the gas phase. The spectra of SO(4) (2-)(H(2)O)(n), with n=3-24, show four main bands assigned to two vibrations of the dianionic core, the water bending mode, and solvent libration. The triply degenerate SO(4) (2-) antisymmetric stretch vibration probes the local solvent symmetry, while the solvent librational band is sensitive to the hydrogen bonding network. The spectra and accompanying electronic structure calculations indicate a highly symmetric structure for the n=6 cluster and closure of the first solvation shell at n=12.

17.
J Chem Phys ; 120(14): 6461-70, 2004 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15267535

RESUMO

The vibrational spectroscopy of the mono- and divanadium oxide cluster cations VO(1-3)+ and V2O(2-6)+ is studied in the region from 600 to 1600 wave numbers by infrared photodissociation of the corresponding cluster cation-helium atom complexes. The comparison of the experimental depletion spectra with the results of density functional calculations on bare vanadium oxide cluster cations allows for an unambiguous identification of the cluster geometry in most cases and, for VO(1-3)+ and V2O(5,6)+, also of the electronic ground state. A common structural motif of all the studied divanadium cluster cations is a four-membered V-O-V-O ring, with three characteristic absorption bands in the 550-900 wave number region. For the V-O-V and V=O stretch modes the relationship between vibrational frequencies and V-O bond distances follows the Badger rule.

18.
Science ; 299(5611): 1375-7, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12574498

RESUMO

The protonated water dimer is a prototypical system for the study of proton transfer in aqueous solution. We report infrared photodissociation spectra of cooled H+(H2O)2 [and D+(D2O2] ions, measured between 620 and 1900 wave numbers (cm-1). The experiment directly probes the shared proton region of the potential energy surface and reveals three strong bands below 1600 cm-1 and one at 1740 cm-1 (for H5O2+). From a comparison to multidimensional quantum calculations, the three lower energy bands were assigned to stretching and bending fundamentals involving the O...H+...O moiety, and the highest energy band was assigned to a terminal water bend. These results highlight the importance of intermode coupling in shared proton systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA