Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 2): 114400, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265604

RESUMO

Biowaste, produced from nature, is preferred to be a good source of carbon and ligninolytic machinery for many microorganisms. They are complex biopolymers composed of lignin, cellulose, and hemicellulose traces. This biomass can be depolymerized to its nano-dimensions to gain exceptional properties useful in the field of cosmetics, pharmaceuticals, high-strength materials, etc. Nano-sized biomass derivatives overcome the inherent drawbacks of the parent material and offer promises as a potential material for a wide range of applications with their unique traits such as low-toxicity, biocompatibility, biodegradability and environmentally friendly nature with versatility. This review focuses on the production of value-added products feasible from nanocellulose, nano lignin, and xylan nanoparticles which is quite a novel study of its kind. Dawn of nanotechnology has converted bio waste by-products (hemicellulose and lignin) into useful precursors for many commercial products. Nano-cellulose has been employed in the fields of electronics, cosmetics, drug delivery, scaffolds, fillers, packaging, and engineering structures. Xylan nanoparticles and nano lignin have numerous applications as stabilizers, additives, textiles, adhesives, emulsifiers, and prodrugs for many polyphenols with an encapsulation efficiency of 50%. This study will support the potential development of composites for emerging applications in all aspects of interest and open up novel paths for multifunctional biomaterials in nano-dimensions for cosmetic, drug carrier, and clinical applications.


Assuntos
Lignina , Xilanos , Lignina/química , Celulose/química , Biomassa
2.
J Environ Manage ; 277: 111406, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038672

RESUMO

Textile effluents contain high levels of pollutants of different categories like dyes, metal salts, acids, bases and microorganisms. Remediation of textile effluents is often challenging because of its composition, which also varies between dyeing units. In this study, we demonstrate the novel use of a waste-water bacterium, Escherichia fergusonii, in the effective remediation of textile effluents. The bacteria application efficiently caused a reduction of color (98.4%), total dissolved solids (75%), sulphates (87%), bicarbonates (83%), chlorides (64%), calcium (84%), and chemical oxygen demand (81%) of the textile effluents. The bacteria-treated effluents were further disinfected and detoxified by treating with rice husk activated charcoal. After the charcoal treatment, the chemical oxygen demand decreased further by 11.5% and biochemical oxygen demand decreased by 85%. The effluents remediated using the two-step process were subjected to toxicity assays using zebrafish (Danio rerio) model. The textile effluents treated using Escherichia fergusonii, followed by activated charcoal were found to be non-toxic and suitable for reuse for domestic applications. Thus, we present here, a simple, less energy-intensive, economic, two-step process as a complete solution for textile effluent treatment. The results of this investigation can be used to simplify the remediation process of textile effluents in common treatment plants as well as the individual dyeing units.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Corantes , Escherichia , Resíduos Industriais/análise , Indústria Têxtil , Têxteis , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA