Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496580

RESUMO

Pediatric high-grade glioma (pHGG) is an incurable central nervous system malignancy that is a leading cause of pediatric cancer death. While pHGG shares many similarities to adult glioma, it is increasingly recognized as a molecularly distinct, yet highly heterogeneous disease. In this study, we longitudinally profiled a molecularly diverse cohort of 16 pHGG patients before and after standard therapy through single-nucleus RNA and ATAC sequencing, whole-genome sequencing, and CODEX spatial proteomics to capture the evolution of the tumor microenvironment during progression following treatment. We found that the canonical neoplastic cell phenotypes of adult glioblastoma are insufficient to capture the range of tumor cell states in a pediatric cohort and observed differential tumor-myeloid interactions between malignant cell states. We identified key transcriptional regulators of pHGG cell states and did not observe the marked proneural to mesenchymal shift characteristic of adult glioblastoma. We showed that essential neuromodulators and the interferon response are upregulated post-therapy along with an increase in non-neoplastic oligodendrocytes. Through in vitro pharmacological perturbation, we demonstrated novel malignant cell-intrinsic targets. This multiomic atlas of longitudinal pHGG captures the key features of therapy response that support distinction from its adult counterpart and suggests therapeutic strategies which are targeted to pediatric gliomas.

2.
bioRxiv ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39026781

RESUMO

Background: In 2019, the Open Pediatric Brain Tumor Atlas (OpenPBTA) was created as a global, collaborative open-science initiative to genomically characterize 1,074 pediatric brain tumors and 22 patient-derived cell lines. Here, we extend the OpenPBTA to create the Open Pediatric Cancer (OpenPedCan) Project, a harmonized open-source multi-omic dataset from 6,112 pediatric cancer patients with 7,096 tumor events across more than 100 histologies. Combined with RNA-Seq from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA), OpenPedCan contains nearly 48,000 total biospecimens (24,002 tumor and 23,893 normal specimens). Findings: We utilized Gabriella Miller Kids First (GMKF) workflows to harmonize WGS, WXS, RNA-seq, and Targeted Sequencing datasets to include somatic SNVs, InDels, CNVs, SVs, RNA expression, fusions, and splice variants. We integrated summarized CPTAC whole cell proteomics and phospho-proteomics data, miRNA-Seq data, and have developed a methylation array harmonization workflow to include m-values, beta-vales, and copy number calls. OpenPedCan contains reproducible, dockerized workflows in GitHub, CAVATICA, and Amazon Web Services (AWS) to deliver harmonized and processed data from over 60 scalable modules which can be leveraged both locally and on AWS. The processed data are released in a versioned manner and accessible through CAVATICA or AWS S3 download (from GitHub), and queryable through PedcBioPortal and the NCI's pediatric Molecular Targets Platform. Notably, we have expanded PBTA molecular subtyping to include methylation information to align with the WHO 2021 Central Nervous System Tumor classifications, allowing us to create research- grade integrated diagnoses for these tumors. Conclusions: OpenPedCan data and its reproducible analysis module framework are openly available and can be utilized and/or adapted by researchers to accelerate discovery, validation, and clinical translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA