Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer ; 129(14): 2245-2255, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37081608

RESUMO

BACKGROUND: Inhibition of the WEE1 kinase by adavosertib (AZD1775) potentiates replicative stress from genomic instability or chemotherapy. This study reports the pediatric solid tumor phase 2 results of the ADVL1312 trial combining irinotecan and adavosertib. METHODS: Pediatric patients with recurrent neuroblastoma (part B), medulloblastoma/central nervous system embryonal tumors (part C), or rhabdomyosarcoma (part D) were treated with irinotecan and adavosertib orally for 5 days every 21 days. The combination was considered effective if there were at least three of 20 responses in parts B and D or six of 19 responses in part C. Tumor tissue was analyzed for alternative lengthening of telomeres and ATRX. Patient's prior tumor genomic analyses were provided. RESULTS: The 20 patients with neuroblastoma (part B) had a median of three prior regimens and 95% had a history of prior irinotecan. There were three objective responses (9, 11, and 18 cycles) meeting the protocol defined efficacy end point. Two of the three patients with objective responses had tumors with alternative lengthening of telomeres. One patient with pineoblastoma had a partial response (11 cycles), but parts C and D did not meet the protocol defined efficacy end point. The combination was well tolerated and there were no dose limiting toxicities at cycle 1 or beyond in any parts of ADVL1312 at the recommended phase 2 dose. CONCLUSION: This is first phase 2 clinical trial of adavosertib in pediatrics and the first with irinotecan. The combination may be of sufficient activity to consider further study of adavosertib in neuroblastoma.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Neuroblastoma , Rabdomiossarcoma , Criança , Humanos , Irinotecano/uso terapêutico , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Rabdomiossarcoma/tratamento farmacológico , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/etiologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Proteínas Tirosina Quinases , Proteínas de Ciclo Celular
2.
Acta Neuropathol ; 145(1): 71-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271929

RESUMO

High-grade astrocytoma with piloid features (HGAP) is a recently recognized glioma type whose classification is dependent on its global epigenetic signature. HGAP is characterized by alterations in the mitogen-activated protein kinase (MAPK) pathway, often co-occurring with CDKN2A/B homozygous deletion and/or ATRX mutation. Experience with HGAP is limited and to better understand this tumor type, we evaluated an expanded cohort of patients (n = 144) with these tumors, as defined by DNA methylation array testing, with a subset additionally evaluated by next-generation sequencing (NGS). Among evaluable cases, we confirmed the high prevalence CDKN2A/B homozygous deletion, and/or ATRX mutations/loss in this tumor type, along with a subset showing NF1 alterations. Five of 93 (5.4%) cases sequenced harbored TP53 mutations and RNA fusion analysis identified a single tumor containing an NTRK2 gene fusion, neither of which have been previously reported in HGAP. Clustering analysis revealed the presence of three distinct HGAP subtypes (or groups = g) based on whole-genome DNA methylation patterns, which we provisionally designated as gNF1 (n = 18), g1 (n = 72), and g2 (n = 54) (median ages 43.5 years, 47 years, and 32 years, respectively). Subtype gNF1 is notable for enrichment with patients with Neurofibromatosis Type 1 (33.3%, p = 0.0008), confinement to the posterior fossa, hypermethylation in the NF1 enhancer region, a trend towards decreased progression-free survival (p = 0.0579), RNA processing pathway dysregulation, and elevated non-neoplastic glia and neuron cell content (p < 0.0001 and p < 0.0001, respectively). Overall, our expanded cohort broadens the genetic, epigenetic, and clinical phenotype of HGAP and provides evidence for distinct epigenetic subtypes in this tumor type.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Sequência , Astrocitoma/genética , Astrocitoma/patologia , Mutação/genética , Metilação de DNA/genética
3.
Brain ; 144(9): 2722-2731, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34581780

RESUMO

Striated muscle needs to maintain cellular homeostasis in adaptation to increases in physiological and metabolic demands. Failure to do so can result in rhabdomyolysis. The identification of novel genetic conditions associated with rhabdomyolysis helps to shed light on hitherto unrecognized homeostatic mechanisms. Here we report seven individuals in six families from different ethnic backgrounds with biallelic variants in MLIP, which encodes the muscular lamin A/C-interacting protein, MLIP. Patients presented with a consistent phenotype characterized by mild muscle weakness, exercise-induced muscle pain, variable susceptibility to episodes of rhabdomyolysis, and persistent basal elevated serum creatine kinase levels. The biallelic truncating variants were predicted to result in disruption of the nuclear localizing signal of MLIP. Additionally, reduced overall RNA expression levels of the predominant MLIP isoform were observed in patients' skeletal muscle. Collectively, our data increase the understanding of the genetic landscape of rhabdomyolysis to now include MLIP as a novel disease gene in humans and solidifies MLIP's role in normal and diseased skeletal muscle homeostasis.


Assuntos
Proteínas Correpressoras/genética , Creatina Quinase , Variação Genética/genética , Doenças Musculares/genética , Mialgia/genética , Proteínas Nucleares/genética , Rabdomiólise/genética , Adolescente , Criança , Pré-Escolar , Creatina Quinase/sangue , Feminino , Humanos , Masculino , Doenças Musculares/sangue , Doenças Musculares/diagnóstico por imagem , Mialgia/sangue , Mialgia/diagnóstico por imagem , Rabdomiólise/sangue , Rabdomiólise/diagnóstico por imagem , Adulto Jovem
4.
Pediatr Dev Pathol ; 25(1): 59-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35168420

RESUMO

Ependymomas (EPN) are commonly encountered brain tumors in the pediatric population. They may arise in the supratentorial compartment, posterior fossa and spinal cord. Histopathologic grading of EPN has always been challenging with poor interobserver reproducibility and lack of correlation between histologic grade and patient outcomes. Recent studies have highlighted that, despite histopathological similarities among variants of EPN at different anatomical sites, they possess site-specific genetic and epigenetic alterations, transcriptional profiles and DNA copy number variations. This has led to a molecular and location-based classification for EPN which has been adopted by the World Health Organization Classification of Central Nervous System Tumors and more accurately risk-stratifies patients than histopathologic grading alone. Given the complexity of this evolving field, the purpose of this paper is to offer a practical approach to the diagnosis of EPN, including the selection of the most appropriate molecular surrogate immunohistochemical stains, basic molecular studies and more sophisticated techniques if needed. The goal is to reach a rapid, sound diagnosis, providing essential information regarding prognosis and guiding clinical decision-making.


Assuntos
Neoplasias Encefálicas , Ependimoma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Criança , Variações do Número de Cópias de DNA , Ependimoma/diagnóstico , Ependimoma/genética , Humanos , Prognóstico , Reprodutibilidade dos Testes
5.
Pediatr Dev Pathol ; 25(1): 46-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33872106

RESUMO

Pediatric glial tumors are unique from their adult counterparts. This important distinction is recognized and incorporated into the World Health Organization classification of central nervous system tumors and applies to both high- and low-grade gliomas, incorporating their specific molecular profiles. Molecular alterations in pediatric high-grade gliomas provide important prognostic information, for example in H3 K27M-mutant tumors. The integration of molecular information is also important for pediatric low-grade gliomas due to their overlapping morphologies and the prognostic and therapeutic implications of these molecular alterations. In this paper, we cover a variety of glial tumors, encompassing neoplasms with predominantly glial histology, astrocytic tumors, oligodendroglial tumors, and mixed glioneuronal tumors. Considering the complexity of this evolving field, the purpose of this article is to offer a practical approach to the diagnosis of pediatric gliomas, including the selection of the most appropriate molecular surrogate immunohistochemical stains, basic molecular studies, and more sophisticated techniques if needed. The goal is to reach a rapid, sound diagnosis, helping guide clinical decision-making regarding prognosis and potential therapies.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Criança , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Humanos , Mutação , Neuroglia , Prognóstico
6.
Pediatr Dev Pathol ; 25(1): 6-9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33872110

RESUMO

Tumor classification in neuropathology is a dynamic and complex topic, with many changes emerging in the past 5 years, up to and including the 2021 publication of the 5th edition of the World Health Organization Classification of Tumours of the Central Nervous System (CNS). For pediatric pathologists who will encounter brain tumors with varying frequency, it is important to understand the principles of these classification updates, particularly the inclusion of molecular genetic features and development of a layered, or integrated, diagnosis. This issue of Perspectives in Pediatric Pathology is dedicated to the examination of pediatric brain tumors, and features articles on intraoperative diagnosis and updated information on molecular-based classification for pediatric glial, glioneuronal, ependymal, and embryonal tumors of the CNS.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Neoplasias Embrionárias de Células Germinativas , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Sistema Nervoso Central , Neoplasias do Sistema Nervoso Central/diagnóstico , Criança , Humanos , Organização Mundial da Saúde
7.
Ann Neurol ; 88(2): 332-347, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32403198

RESUMO

OBJECTIVE: A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in 2 siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition. METHODS: We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in GGPS1 followed by GGPS1 Sanger sequencing or WES in 5 additional families with the same phenotype. Molecular modeling, biochemical analysis, laser membrane injury assay, and the generation of a Y259C knock-in mouse were done. RESULTS: A total of 11 patients in 6 families carrying 5 different biallelic pathogenic variants in specific domains of GGPS1 were identified. GGPS1 encodes geranylgeranyl diphosphate synthase in the mevalonate/isoprenoid pathway, which catalyzes the synthesis of geranylgeranyl pyrophosphate, the lipid precursor of geranylgeranylated proteins including small guanosine triphosphatases. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. There was delayed membrane healing after laser injury in patient-derived myogenic cells, and a knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality. INTERPRETATION: The identification of specific GGPS1 mutations defines the cause of a unique form of muscular dystrophy with hearing loss and ovarian insufficiency and points to a novel pathway for this clinical constellation. ANN NEUROL 2020;88:332-347.


Assuntos
Dimetilaliltranstransferase/genética , Farnesiltranstransferase/genética , Geraniltranstransferase/genética , Perda Auditiva/genética , Distrofias Musculares/genética , Mutação/genética , Insuficiência Ovariana Primária/genética , Adolescente , Adulto , Animais , Feminino , Técnicas de Introdução de Genes/métodos , Perda Auditiva/diagnóstico por imagem , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Distrofias Musculares/diagnóstico por imagem , Linhagem , Insuficiência Ovariana Primária/diagnóstico por imagem , Estrutura Secundária de Proteína , Análise de Sequência de DNA/métodos , Sequenciamento do Exoma/métodos , Adulto Jovem
8.
Pediatr Dev Pathol ; 24(1): 56-61, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32970505

RESUMO

Methadone, an opioid agonist, is the recommended treatment for pregnant women with opioid use disorder (OUD). Fetal/neonatal autopsy findings as well as placental changes in the setting of maternal OUD or methadone maintenance therapy (MMT) are not well-characterized. Here we present a case of a neonate who had exposure to MMT while in utero and died shortly after birth and was subsequently found to have multifocal calcified renal vein thrombosis, a recent inferior vena cava thrombus, and placental features of fetal vascular malperfusion at autopsy.


Assuntos
Analgésicos Opioides/efeitos adversos , Morte Fetal/etiologia , Feto/irrigação sanguínea , Metadona/efeitos adversos , Tratamento de Substituição de Opiáceos/efeitos adversos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Veias Renais/patologia , Veia Cava Inferior/patologia , Trombose Venosa/induzido quimicamente , Autopsia , Feminino , Humanos , Transtornos Relacionados ao Uso de Opioides/diagnóstico , Gravidez , Trombose Venosa/patologia
9.
Int J Cancer ; 144(8): 1983-1995, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30230537

RESUMO

Loss of SMARCB1 is the hallmark genetic event that characterizes rhabdoid tumors in children. Rhabdoid tumors of the brain (ATRT) occur in young children and are particularly challenging with poor long-term survival. SMARCB1 is a member of the SWI/SNF chromatin remodeling complex that is responsible for determining cellular pluripotency and lineage commitment. The mechanisms by which SMARCB1 deletion results in tumorigenesis remain unclear. Recent studies demonstrate that ATRT consists of 3 genomic subgroups with a subset of poor outcome tumors expressing high BMP and MYC pathway activation. Here we show that MYC occupies distinct promoter loci in ATRT compared to embryonic stem (ES) cells. Furthermore, using human ATRT cell lines, patient-derived cell culture, ex vivo patient-derived tumor, and orthotopic xenograft models, we show that MYC inhibition is a molecular vulnerability in SMARCB1-deleted tumors and that such inhibition effectively suppresses BMP and pluripotency-associated genomic programs, attenuates tumor cell self-renewal, promotes senescence, and inhibits ATRT tumor growth in vivo. Transgenic expression of Omomyc (a bona-fide MYC dominant negative) or chemical inhibition of MYC transcriptomic programs with the BET inhibitor JQ1 phenocopy genetic depletion of MYC, effectively restricting ATRT tumor growth and opening a promising therapeutic avenue for rhabdoid tumors in children.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Teratoma/genética , Animais , Azepinas/farmacologia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular Tumoral , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Cromatina/genética , Cromatina/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-myc/genética , Tumor Rabdoide/patologia , Teratoma/patologia , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mod Pathol ; 32(10): 1434-1446, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175328

RESUMO

Malignant peripheral nerve sheath tumors contain loss of histone H3K27 trimethylation (H3K27me3) due to driver mutations affecting the polycomb repressive complex 2 (PRC2). Consequently, loss of H3K27me3 staining has served as a diagnostic marker for this tumor type. However, recent reports demonstrate H3K27me3 loss in numerous other tumors, including some in the differential diagnosis of malignant peripheral nerve sheath tumor. Since these tumors lose H3K27me3 through mechanisms distinct from PRC2 loss, we set out to determine whether loss of dimethylation of H3K27, which is also catalyzed by PRC2, might be a more specific marker of PRC2 loss and malignant peripheral nerve sheath tumor. Using mass spectrometry, we identify a near complete loss of H3K27me2 in malignant peripheral nerve sheath tumors and cell lines. Immunohistochemical analysis of 72 malignant peripheral nerve sheath tumors, seven K27M-mutant gliomas, 43 ependymomas, and 10 Merkel cell carcinomas demonstrates that while H3K27me3 loss is common across these tumor types, H3K27me2 loss is limited to malignant peripheral nerve sheath tumors and is highly concordant with H3K27me3 loss (33/34 cases). Thus, increased specificity does not come at the cost of greatly reduced sensitivity. To further compare H3K27me2 and H3K27me3 immunohistochemistry, we investigated 42 melanomas and 54 synovial sarcomas, histologic mimics of malignant peripheral nerve sheath tumor with varying degrees of H3K27me3 loss in prior reports. While global H3K27me3 loss was not seen in these tumors, weak and limited H3K27me3 staining was common. By contrast, H3K27me2 staining was more clearly retained in all cases, making it a superior binary classifier. This was confirmed by digital image analysis of stained slides. Our findings indicate that H3K27me2 loss is highly specific for PRC2 loss and that PRC2 loss is a rarer phenomenon than H3K27me3 loss. Consequently, H3K27me2 loss is a superior diagnostic marker for malignant peripheral nerve sheath tumor.


Assuntos
Biomarcadores Tumorais/análise , Metilação de DNA/genética , Histonas/análise , Neurofibrossarcoma/diagnóstico , Complexo Repressor Polycomb 2/genética , Biomarcadores Tumorais/genética , Histonas/genética , Humanos , Neurofibrossarcoma/genética
11.
Acta Neuropathol ; 136(2): 227-237, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30019219

RESUMO

Posterior fossa ependymoma comprise three distinct molecular variants, termed PF-EPN-A (PFA), PF-EPN-B (PFB), and PF-EPN-SE (subependymoma). Clinically, they are very disparate and PFB tumors are currently being considered for a trial of radiation avoidance. However, to move forward, unraveling the heterogeneity within PFB would be highly desirable. To discern the molecular heterogeneity within PFB, we performed an integrated analysis consisting of DNA methylation profiling, copy-number profiling, gene expression profiling, and clinical correlation across a cohort of 212 primary posterior fossa PFB tumors. Unsupervised spectral clustering and t-SNE analysis of genome-wide methylation data revealed five distinct subtypes of PFB tumors, termed PFB1-5, with distinct demographics, copy-number alterations, and gene expression profiles. All PFB subtypes were distinct from PFA and posterior fossa subependymomas. Of the five subtypes, PFB4 and PFB5 are more discrete, consisting of younger and older patients, respectively, with a strong female-gender enrichment in PFB5 (age: p = 0.011, gender: p = 0.04). Broad copy-number aberrations were common; however, many events such as chromosome 2 loss, 5 gain, and 17 loss were enriched in specific subtypes and 1q gain was enriched in PFB1. Late relapses were common across all five subtypes, but deaths were uncommon and present in only two subtypes (PFB1 and PFB3). Unlike the case in PFA ependymoma, 1q gain was not a robust marker of poor progression-free survival; however, chromosome 13q loss may represent a novel marker for risk stratification across the spectrum of PFB subtypes. Similar to PFA ependymoma, there exists a significant intertumoral heterogeneity within PFB, with distinct molecular subtypes identified. Even when accounting for this heterogeneity, extent of resection remains the strongest predictor of poor outcome. However, this biological heterogeneity must be accounted for in future preclinical modeling and personalized therapies.


Assuntos
Variações do Número de Cópias de DNA/genética , Ependimoma/classificação , Ependimoma/genética , Neoplasias Infratentoriais/classificação , Neoplasias Infratentoriais/genética , Adolescente , Adulto , Fatores Etários , Criança , Estudos de Coortes , Metilação de DNA/genética , Ependimoma/patologia , Ependimoma/cirurgia , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Infratentoriais/patologia , Neoplasias Infratentoriais/cirurgia , Estimativa de Kaplan-Meier , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Adulto Jovem
12.
Cancer ; 123(19): 3807-3815, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28608950

RESUMO

BACKGROUND: Programmed death 1 (PD-1) signaling in the tumor microenvironment dampens immune responses to cancer, and blocking this axis induces antitumor effects in several malignancies. Clinical studies of PD-1 blockade are only now being initiated in pediatric patients, and little is known regarding programmed death-ligand 1 (PD-L1) expression in common childhood cancers. The authors characterized PD-L1 expression and tumor-associated immune cells (TAICs) (lymphocytes and macrophages) in common pediatric cancers. METHODS: Whole slide sections and tissue microarrays were evaluated by immunohistochemistry for PD-L1 expression and for the presence of TAICs. TAICs were also screened for PD-L1 expression. RESULTS: Thirty-nine of 451 evaluable tumors (9%) expressed PD-L1 in at least 1% of tumor cells. The highest frequency histotypes comprised Burkitt lymphoma (80%; 8 of 10 tumors), glioblastoma multiforme (36%; 5 of 14 tumors), and neuroblastoma (14%; 17 of 118 tumors). PD-L1 staining was associated with inferior survival among patients with neuroblastoma (P = .004). Seventy-four percent of tumors contained lymphocytes and/or macrophages. Macrophages were significantly more likely to be identified in PD-L1-positive versus PD-L1-negative tumors (P < .001). CONCLUSIONS: A subset of diagnostic pediatric cancers exhibit PD-L1 expression, whereas a much larger fraction demonstrates infiltration with tumor-associated lymphocytes. PD-L1 expression may be a biomarker for poor outcome in neuroblastoma. Further preclinical and clinical investigation will define the predictive nature of PD-L1 expression in childhood cancers both at diagnosis and after exposure to chemoradiotherapy. Cancer 2017;123:3807-3815. © 2017 American Cancer Society.


Assuntos
Antígeno B7-H1/análise , Linfócitos do Interstício Tumoral , Macrófagos , Proteínas de Neoplasias/análise , Neoplasias/química , Neoplasias Ósseas/química , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Linfoma de Burkitt/química , Linfoma de Burkitt/imunologia , Linfoma de Burkitt/patologia , Criança , Glioblastoma/química , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Neoplasias/imunologia , Neoplasias/mortalidade , Neoplasias/patologia , Neuroblastoma/química , Neuroblastoma/imunologia , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Osteossarcoma/química , Osteossarcoma/imunologia , Osteossarcoma/patologia , Rabdomiossarcoma/química , Rabdomiossarcoma/imunologia , Rabdomiossarcoma/patologia , Sarcoma de Ewing/química , Sarcoma de Ewing/imunologia , Sarcoma de Ewing/patologia , Análise Serial de Tecidos
14.
Acta Neuropathol ; 134(5): 705-714, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28733933

RESUMO

Posterior fossa ependymomas (EPN_PF) in children comprise two morphologically identical, but biologically distinct tumor entities. Group-A (EPN_PFA) tumors have a poor prognosis and require intensive therapy. In contrast, group-B tumors (EPN_PFB) exhibit excellent prognosis and the current consensus opinion recommends future clinical trials to test the possibility of treatment de-escalation in these patients. Therefore, distinguishing these two tumor subtypes is critical. EPN_PFA and EPN_PFB can be distinguished based on DNA methylation signatures, but these assays are not routinely available. We have previously shown that a subset of poorly prognostic childhood EPN_PF exhibits global reduction in H3K27me3. Therefore, we set out to determine whether a simple immunohistochemical assay for H3K27me3 could be used to segregate EPN_PFA from EPN_PFB tumors. We assembled a cohort of 230 childhood ependymomas and H3K27me3 immunohistochemistry was assessed as positive or negative in a blinded manner. H3K27me3 staining results were compared with DNA methylation-based subgroup information available in 112 samples [EPN_PFA (n = 72) and EPN_PFB tumors (n = 40)]. H3K27me3 staining was globally reduced in EPN_PFA tumors and immunohistochemistry showed 99% sensitivity and 100% specificity in segregating EPN_PFA from EPN_PFB tumors. Moreover, H3K27me3 immunostaining was sufficient to delineate patients with worse prognosis in two independent, non-overlapping cohorts (n = 133 and n = 97). In conclusion, immunohistochemical evaluation of H3K27me3 global reduction is an economic, easily available and readily adaptable method for defining high-risk EPN_PFA from low-risk posterior fossa EPN_PFB tumors to inform prognosis and to enable the design of future clinical trials.


Assuntos
Ependimoma/metabolismo , Neoplasias Infratentoriais/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Criança , Pré-Escolar , Intervalo Livre de Doença , Ependimoma/mortalidade , Ependimoma/patologia , Feminino , Humanos , Lactente , Neoplasias Infratentoriais/mortalidade , Neoplasias Infratentoriais/patologia , Masculino , Prognóstico , Sistema de Registros , Taxa de Sobrevida
15.
Hum Mol Genet ; 23(4): 980-91, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24105469

RESUMO

Core myopathies (CM), the main non-dystrophic myopathies in childhood, remain genetically unexplained in many cases. Heart disease is not considered part of the typical CM spectrum. No congenital heart defect has been reported, and childhood-onset cardiomyopathy has been documented in only two CM families with homozygous mutations of the TTN gene. TTN encodes titin, a giant protein of striated muscles. Recently, heterozygous TTN truncating mutations have also been reported as a major cause of dominant dilated cardiomyopathy. However, relatively few TTN mutations and phenotypes are known, and titin pathophysiological role in cardiac and skeletal muscle conditions is incompletely understood. We analyzed a series of 23 families with congenital CM and primary heart disease using TTN M-line-targeted sequencing followed in selected patients by whole-exome sequencing and functional studies. We identified seven novel homozygous or compound heterozygous TTN mutations (five in the M-line, five truncating) in 17% patients. Heterozygous parents were healthy. Phenotype analysis identified four novel titinopathies, including cardiac septal defects, left ventricular non-compaction, Emery-Dreifuss muscular dystrophy or arthrogryposis. Additionally, in vitro studies documented the first-reported absence of a functional titin kinase domain in humans, leading to a severe antenatal phenotype. We establish that CM are associated with a large range of heart conditions of which TTN mutations are a major cause, thereby expanding the TTN mutational and phenotypic spectrum. Additionally, our results suggest titin kinase implication in cardiac morphogenesis and demonstrate that heterozygous TTN truncating mutations may not manifest unless associated with a second mutation, reassessing the paradigm of their dominant expression.


Assuntos
Códon sem Sentido , Conectina/genética , Cardiopatias/genética , Miopatia da Parte Central/genética , Adolescente , Conectina/metabolismo , Consanguinidade , Feminino , Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Cardiopatias/metabolismo , Cardiopatias/patologia , Heterozigoto , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatia da Parte Central/metabolismo , Miopatia da Parte Central/patologia , Linhagem , Fenótipo , Adulto Jovem
16.
Acta Neuropathol ; 128(5): 743-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200322

RESUMO

Pediatric glioblastomas (GBM) are highly aggressive and lethal tumors. Recent sequencing studies have shown that ~30 % of pediatric GBM and ~80 % of diffuse intrinsic pontine gliomas show K27M mutations in the H3F3A gene, a variant encoding histone H3.3. H3F3A K27M mutations lead to global reduction in H3K27me3. Our goal was to develop biomarkers for the histopathologic detection of these tumors. Therefore, we evaluated the utility of measuring H3K27me3 global reduction as a histopathologic and prognostic biomarker and tested an antibody directed specifically against the H3.3 K27M mutation in 290 samples. The study cohort included 203 pediatric (including 38 pediatric high-grade astrocytomas) and 38 adult brain tumors of various subtypes and grades and 49 non-neoplastic reactive brain tissues. Detection of H3.3 K27M by immunohistochemistry showed 100 % sensitivity and specificity and was superior to global reduction in H3K27me3 as a biomarker in diagnosing H3F3A K27M mutations. Moreover, cases that stained positive for H3.3 K27M showed a significantly poor prognosis compared to corresponding negative tumors. These results suggest that immunohistochemical detection of H3.3 K27M is a sensitive and specific surrogate for the H3F3A K27M mutation and defines a prognostically poor subset of pediatric GBM.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Histonas/genética , Mutação/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Recém-Nascido , Lisina/genética , Masculino , Metionina/genética , Pediatria , Modelos de Riscos Proporcionais , Sensibilidade e Especificidade , Adulto Jovem
17.
J Neuroophthalmol ; 34(2): 173-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24705258

RESUMO

Optic nerve sheath meningioma is most often discovered in adults and is relatively rare in children. We report a 12-year-old girl with an atypical primary optic nerve meningioma, which demonstrated restricted diffusion on magnetic resonance imaging and high Ki67 labeling index. The patient developed recurrence, despite aggressive surgical resection of primary tumor and local radiation. We are unaware of previous reports documenting this constellation of imaging and histopathologic findings.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias Meníngeas/patologia , Meningioma/patologia , Neoplasias de Bainha Neural/patologia , Nervo Óptico/patologia , Criança , Feminino , Humanos
18.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496580

RESUMO

Pediatric high-grade glioma (pHGG) is an incurable central nervous system malignancy that is a leading cause of pediatric cancer death. While pHGG shares many similarities to adult glioma, it is increasingly recognized as a molecularly distinct, yet highly heterogeneous disease. In this study, we longitudinally profiled a molecularly diverse cohort of 16 pHGG patients before and after standard therapy through single-nucleus RNA and ATAC sequencing, whole-genome sequencing, and CODEX spatial proteomics to capture the evolution of the tumor microenvironment during progression following treatment. We found that the canonical neoplastic cell phenotypes of adult glioblastoma are insufficient to capture the range of tumor cell states in a pediatric cohort and observed differential tumor-myeloid interactions between malignant cell states. We identified key transcriptional regulators of pHGG cell states and did not observe the marked proneural to mesenchymal shift characteristic of adult glioblastoma. We showed that essential neuromodulators and the interferon response are upregulated post-therapy along with an increase in non-neoplastic oligodendrocytes. Through in vitro pharmacological perturbation, we demonstrated novel malignant cell-intrinsic targets. This multiomic atlas of longitudinal pHGG captures the key features of therapy response that support distinction from its adult counterpart and suggests therapeutic strategies which are targeted to pediatric gliomas.

19.
Mod Pathol ; 26(11): 1425-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23765250

RESUMO

Loss-of-function of alpha thalassemia/mental retardation syndrome X-linked (ATRX) protein leads to a phenotype called alternative lengthening of telomeres (ALT) in some tumors. High-grade astrocytomas comprise a heterogeneous group of central nervous system tumors. We examined a large cohort of adult (91) and pediatric (n=88) high-grade astrocytomas as well as lower grade forms (n=35) for immunohistochemical loss of ATRX protein expression and the presence of ALT using telomere-specific fluorescence in situ hybridization, with further correlation to other known genetic alterations. We found that in pediatric high-grade astrocytomas, 29.6% of tumors were positive for ALT and 24.5% were immunonegative for the ATRX protein, these two alterations being highly associated with one another (P<0.0001). In adult high-grade astrocytomas, 26.4% of tumors were similarly positive for ALT, including 80% of ATRX protein immunonegative cases (P<0.0001). Similar frequencies were found in 11 adult low-grade astrocytomas, whereas all 24 pilocytic astrocytomas were negative for ALT. We did not find any significant correlations between isocitrate dehydrogenase status and either ALT positivity or ATRX protein expression in our adult high-grade astrocytomas. In both cohorts, however, the ALT positive high-grade astrocytomas showed more frequent amplification of the platelet-derived growth factor receptor alpha gene (PDGFRA; 45% and 50%, respectively) than the ALT negative counterparts (18% and 26%; P=0.03 for each). In summary, our data show that the ALT and ATRX protein alterations are common in both pediatric and adult high-grade astrocytomas, often with associated PDGFRA gene amplification.


Assuntos
Astrocitoma/química , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/química , Neoplasias Encefálicas/genética , DNA Helicases/análise , Proteínas Nucleares/análise , Homeostase do Telômero , Telômero/genética , Adulto , Fatores Etários , Astrocitoma/mortalidade , Astrocitoma/patologia , Astrocitoma/cirurgia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Criança , Feminino , Amplificação de Genes , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Isocitrato Desidrogenase/análise , Isocitrato Desidrogenase/genética , Estimativa de Kaplan-Meier , Masculino , Mutação , Gradação de Tumores , América do Norte , Modelos de Riscos Proporcionais , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Proteína Nuclear Ligada ao X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA