Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 91(8): 5011-5020, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30793604

RESUMO

Anthropogenic copper pollution of environmental waters from sources such as acid mine drainage, antifouling paints, and industrial waste discharge is a major threat to our environment and human health. This study presents an optical sensing system that combines self-assembled glutaraldehyde-cross-linked double-layered polyethylenimine (PEI-GA-PEI)-modified nanoporous anodic alumina (NAA) interferometers with reflectometric interference spectroscopy (RIfS) for label-free, selective monitoring of ionic copper in environmental waters. Calibration of the sensing system with analytical solutions of copper shows a linear working range between 1 and 100 mg L-1, and a low limit of detection of 0.007 ± 0.001 mg L-1 (i.e., ∼0.007 ppm). Changes in the effective optical thickness (ΔOTeff) of PEI-GA-PEI-functionalized NAA interferometers are monitored in real-time by RIfS, and correlated with the amount of ionic copper present in aqueous solutions. The system performance is validated through X-ray photoelectron spectroscopy (XPS) and the spatial distribution of copper within the nanoporous films is characterized by time-of-flight-secondary ion mass spectroscopy (TOF-SIMS). The specificity and chemical selectivity of the PEI-GA-PEI-NAA sensor to Cu2+ ions is verified by screening six different metal ion solutions containing potentially interfering ions such as Al3+, Cd2+, Fe3+, Pb2+, Ni2+, and Zn2+. Finally, the performance of the PEI-GA-PEI-NAA sensor for real-life applications is demonstrated using legacy acid mine drainage liquid and tap water for qualitative and quantitative detection of copper ions. This study provides new opportunities to develop portable, cost-competitive, and ultrasensitive sensing systems for real-life environmental applications.


Assuntos
Óxido de Alumínio/química , Cobre/análise , Interferometria/instrumentação , Nanoporos , Polietilenoimina/química , Calibragem , Cobre/química , Eletrodos
2.
Anal Chem ; 90(16): 10039-10048, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30041521

RESUMO

This study reports on the real-time binding assessment between heavy metal ions and blood proteins immobilized onto nanoporous anodic alumina photonic crystals (NAA-PCs) by reflectometric interference spectroscopy (RIfS). The surface of NAA-PCs is chemically functionalized with γ-globulin (GG), transferrin (TFN), and serum albumin (HSA), the major proteins present in human blood plasma. Protein-modified NAA-PC platforms are exposed to analytical solutions of mercury ions of different concentrations. Dynamic changes in the effective optical thickness of protein-modified NAA-PCs in response to heavy metal ions are assessed in real time to evaluate the binding kinetics, affinity, and mechanism. Protein molecules undergo conformational changes upon exposure to mercury ions, with HSA exhibiting the strongest affinity. The combination of protein-modified NAA-PCs with RIfS allows real-time monitoring of protein-heavy metal ions interactions under dynamic flow conditions. This system is capable of detecting dynamic conformational changes in these proteins upon exposure to heavy metal ions. Our results provide new insights into these binding events, which could enable new methodologies to study the toxicity of heavy metal ions and other biomolecular interactions.


Assuntos
Óxido de Alumínio/química , Metais Pesados/metabolismo , Albumina Sérica Humana/metabolismo , Transferrina/metabolismo , gama-Globulinas/metabolismo , Humanos , Porosidade , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Análise Espectral/métodos
3.
Sensors (Basel) ; 18(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415436

RESUMO

Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA) to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time). The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA), which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS) signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT) using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA)-modified NAA (i.e., sensing element) and quercetin (i.e., analyte). BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT) to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different concentrations of quercetin. The multi-point sensing performance of BL-NAAs was determined for each pore layer, with an average sensitivity and low limit of detection of 600 nm (mg mL-1)-1 and 0.14 mg mL-1, respectively. BL-NAAs photonic structures have the capability to be used as platforms for multi-point RIfS sensing of biomolecules that can be further extended for simultaneous size-exclusion separation and multi-analyte sensing using these bilayered nanostructures.

4.
Anal Chem ; 88(11): 5971-80, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27128744

RESUMO

In this study, we report an innovative approach aiming to assess the binding affinity between drug molecules and human serum albumin by combining nanoporous anodic alumina rugate filters (NAA-RFs) modified with human serum albumin (HSA) and reflectometric interference spectroscopy (RIfS). NAA-RFs are photonic crystal structures produced by sinusoidal pulse anodization of aluminum that present two characteristic optical parameters, the characteristic reflection peak (λPeak), and the effective optical thickness of the film (OTeff), which can be readily used as sensing parameters. A design of experiments strategy and an ANOVA analysis are used to establish the effect of the anodization parameters (i.e., anodization period and anodization offset) on the sensitivity of HSA-modified NAA-RFs toward indomethacin, a model drug. To this end, two sensing parameters are used, that is, shifts in the characteristic reflection peak (ΔλPeak) and changes in the effective optical thickness of the film (ΔOTeff). Subsequently, optimized NAA-RFs are used as sensing platforms to determine the binding affinity between a set of drugs (i.e., indomethacin, coumarin, sulfadymethoxine, warfarin, and salicylic acid) and HSA molecules. Our results verify that the combination of HSA-modified NAA-RFs with RIfS can be used as a portable, low-cost, and simple system for establishing the binding affinity between drugs and plasma proteins, which is a critical factor to develop efficient medicines for treating a broad range of diseases and medical conditions.


Assuntos
Cumarínicos/química , Indometacina/química , Ácido Salicílico/química , Albumina Sérica Humana/química , Sulfadimetoxina/química , Varfarina/química , Óxido de Alumínio/química , Técnicas Biossensoriais , Cristalização , Eletrodos , Humanos , Nanoporos , Fenômenos Ópticos , Fótons
5.
Anal Chem ; 87(17): 9016-24, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26259031

RESUMO

Herein, we present an interferometric sensor based on the combination of chemically functionalized nanoporous anodic alumina photonic films (NAA-PFs) and reflectometric interference spectroscopy (RIfS) aimed to detect trace levels of enzymes by selective digestion of gelatin. The fabrication and sensing performance of the proposed sensor were characterized in real-time by estimating the changes in effective optical thickness (i.e., sensing principle) of gelatin-modified NAA-PFs (i.e., sensing element) during enzymatic digestion. The working range (WR), sensitivity (S), low limit of detection (LLoD), and linearity (R(2)) of this enzymatic sensor were established by a series of experiments with different concentrations of gelatin (i.e., specific chemical sensing element) and trypsin (i.e., analyte), a model protease enzyme with relevant implications as a biomarker in the diagnosis of several diseases. The chemical selectivity of the sensor was demonstrated by comparison of gelatin digestion by other nonspecific enzyme models such as chymotrypsin and horseradish peroxidase. Furthermore, the role of the chemical sensing element (i.e., gelatin) was assessed by using hemoglobin instead of gelatin. Finally, we demonstrated that this sensor can be readily used to establish the kinetic parameters of enzymatic reactions. The obtained results revealed that the presented sensor has a promising potential to be used as a point-of-care system for fast detection of gastrointestinal diseases at early stages.


Assuntos
Óxido de Alumínio/química , Gelatina/química , Nanoestruturas/química , Fótons , Tripsina/análise , Eletrodos , Interferometria , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Fatores de Tempo , Tripsina/metabolismo
6.
Anal Chem ; 86(3): 1837-44, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24417182

RESUMO

In this study, we report about the structural engineering and optical optimization of nanoporous anodic alumina rugate filters (NAA-RFs) for real-time and label-free biosensing applications. Structurally engineered NAA-RFs are combined with reflection spectroscopy (RfS) in order to develop a biosensing system based on the position shift of the characteristic peak in the reflection spectrum of NAA-RFs (Δλpeak). This system is optimized and assessed by measuring shifts in the characteristic peak position produced by small changes in the effective medium (i.e., refractive index). To this end, NAA-RFs are filled with different solutions of d-glucose, and the Δλpeak is measured in real time by RfS. These results are validated by a theoretical model (i.e., the Looyenga-Landau-Lifshitz model), demonstrating that the control over the nanoporous structure makes it possible to optimize optical signals in RfS for sensing purposes. The linear range of these optical sensors ranges from 0.01 to 1.00 M, with a low detection limit of 0.01 M of d-glucose (i.e., 1.80 ppm), a sensitivity of 4.93 nm M(-1) (i.e., 164 nm per refractive index units), and a linearity of 0.998. This proof-of-concept study demonstrates that the proposed system combining NAA-RFs with RfS has outstanding capabilities to develop ultrasensitive, portable, and cost-competitive optical sensors.


Assuntos
Óxido de Alumínio/química , Técnicas Biossensoriais/instrumentação , Engenharia/instrumentação , Filtração/instrumentação , Nanotecnologia/instrumentação , Fenômenos Ópticos , Técnicas Biossensoriais/economia , Análise Custo-Benefício , Eletrodos , Porosidade , Fatores de Tempo
7.
Sensors (Basel) ; 14(7): 11878-918, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25004150

RESUMO

Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices.


Assuntos
Óxido de Alumínio/química , Técnicas Biossensoriais/instrumentação , Interferometria/instrumentação , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanoporos/ultraestrutura , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Propriedades de Superfície , Transdutores
8.
ACS Appl Mater Interfaces ; 16(12): 15059-15072, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498400

RESUMO

Dendrimers─nanosized macromolecules that can function as hosts for encapsulation of guest molecules─provide new avenues to engineer gain media for lasing systems. In this context, this study investigates the interplay between the geometric features of a model porous scattering medium, nanoporous anodic alumina (NAA), and the chemical features of a model fluorophore-dendrimer encapsulation system to maximize random lasing. The inner surface of the NAA platforms is functionalized with fluorophore molecules encapsulated within dendrimers via an electrostatic interaction. The resulting solid-state composite structures emit well-resolved, intense random lasing when subjected to optical pumping. By engineering fluorophore-dendrimer and geometric features of scattering medium, we can precisely tune the characteristics of random lasing emissions. It is found that lasing structures with low porosity and thickness functionalized with fluorophore molecules encapsulated in second-generation dendrimers provide the best platforms for lasing generation, resulting in a strongly polarized laser at ∼594 nm that has a high quality-gain product of ∼1588 au, a polarization quality of ∼0.86, and a lasing threshold of ∼0.05 mJ pulse-1. Comparative analysis indicates that dendrimers achieve 2.5 times better random lasing than conventional surfactants due to improved encapsulation and minimization of photobleaching. Our results reveal the importance of the fluorophore encapsulation method and design of scattering media in the engineering of random lasing platforms for applications in optical and optoelectrical systems.

9.
ACS Appl Mater Interfaces ; 16(19): 24961-24975, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706267

RESUMO

Increasingly complex modern gas-monitoring scenarios necessitate advanced sensing capabilities to detect and identify a diverse range of gases under varying conditions. There is a rising demand for individual sensors with multiple responses capable of recognizing gases, identifying components in mixtures, and providing stable responses. Inspired by gas sensors employing multivariable response principles, we develop a nanoporous anodic alumina high-order microcavity (NAA-HOµCV) gas sensor with multiple optical outputs for discriminative gas detection. The NAA-HOµCV architecture, formed by a Fabry-Pérot microcavity with distributed Bragg reflector (DBR) mirrors and an extended-length microcavity layer supporting multiple resonant modes, serves as an effective solid-state fingerprint platform for distinguishing volatile organic compound (VOC) gases. Our research reveals that the coupling strength of light into resonant modes and their evolution depend on the thickness of the DBR mirrors and the dimension of the microcavity layer, which allows us to optimize the discriminative sensing capability of the NAA-HOµCV sensor through structural engineering of the microcavity and photonic crystal mirrors. Gas-sensing experiments conducted on the NAA-HOµCV sensor demonstrate real-time discrimination between physiosorbed VOC gases (isopropanol, ethanol, or acetone) in reversible gas sensing. It also achieves superior ppb-level sensing in irreversible gas sensing of model silane molecules. Our study presents promising avenues for designing compact, cost-effective, and highly efficient gas sensors with tailored properties for discriminative gas detection.

10.
ACS Appl Mater Interfaces ; 16(9): 11787-11799, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394678

RESUMO

The fields of plasmonics and photonic crystals (PCs) have been combined to generate model light-confining Tamm plasmon (TMM) cavities. This approach effectively overcomes the intrinsic limit of diffraction faced by dielectric cavities and mitigates losses associated with the inherent properties of plasmonic materials. In this study, nanoporous anodic alumina PCs, produced by two-step sinusoidal pulse anodization, are used as a model dielectric platform to establish the methodology for tailoring light confinement through TMM resonances. These model dielectric mirrors feature highly organized nanopores and narrow bandwidth photonic stopbands (PSBs) across different positions of the spectrum. Different types of metallic films (gold, silver, and aluminum) were coated on the top of these model dielectric mirrors. By structuring the features of the plasmonic and photonic components of these hybrid structures, the characteristics of TMM resonances were studied to elucidate effective approaches to optimize the light-confining capability of this hybrid TMM model system. Our findings indicate that the coupling of photonic and plasmonic modes is maximized when the PSB of the model dielectric mirror is broad and located within the midvisible region. It was also found that thicker metal films enhance the quality of the confined light. Gas sensing experiments were performed on optimized TMM systems, and their sensitivity was assessed in real time to demonstrate their applicability. Ag films provide superior performance in achieving the highest sensitivity (S = 0.038 ± 0.001 nm ppm-1) based on specific binding interactions between thiol-containing molecules and metal films.

11.
Anal Chem ; 85(16): 7904-11, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23862775

RESUMO

Herein, we present a comparative study about the sensing performance of optical biosensors based on photoluminescence spectroscopy (PLS) and reflectometric interference spectroscopy (RIfS) combined with nanoporous anodic alumina (NAA) platforms when detecting different analytes under distinct adsorption conditions. First, NAA platforms are structurally engineered in order for optimizing the optical signals obtained by PLS and RIfS. Then, the most optimal NAA platforms combined with PLS and RIfS are quantitatively compared by detecting two different analytes: d-glucose and l-cysteine under nonspecific and specific adsorption conditions, respectively. The obtained results demonstrate that such parameters as the analyte nature and adsorption conditions play a direct role in the sensing performance of these platforms. However, as this study demonstrates, PLS-NAA platforms are more sensitive than RIfS-NAA ones. The former shows better linearity (i.e., proportional change in the sensing parameter with analyte concentration), higher sensitivity toward analytes (i.e., sharper change in the sensing parameter with analyte concentration), and lower limit of detection (i.e., minimum detectable concentration of analyte).


Assuntos
Óxido de Alumínio , Técnicas Biossensoriais , Eletrodos , Nanoestruturas , Luminescência , Peptídeos/análise
12.
Langmuir ; 29(8): 2784-9, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23373556

RESUMO

An optofluidic method that accurately identifies the internal geometry of nanochannel arrays is presented. It is based on the dynamics of capillary-driven fluid imbibition, which is followed by laser interferometry. Conical nanochannel arrays in anodized alumina are investigated, which present an asymmetry of the filling times measured from different sides of the membrane. It is demonstrated by theory and experiments that the capillary filling asymmetry only depends on the ratio H of the inlet to outlet pore radii and that the ratio of filling times vary closely as H(7/3). Besides, the capillary filling of conical channels exhibits striking results in comparison to the corresponding cylindrical channels. Apart from these novel results in nanoscale fluid dynamics, the whole method discussed here serves as a characterization technique for nanoporous membranes.


Assuntos
Óxido de Alumínio/química , Técnicas Analíticas Microfluídicas , Nanoestruturas/química , Nanotecnologia , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Porosidade , Propriedades de Superfície
13.
ACS Appl Nano Mater ; 6(7): 5274-5283, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37092121

RESUMO

Gold-coated gradient-index filters based on nanoporous anodic alumina (Au-coated NAA-GIFs) were used as model platforms to elucidate how Tamm plasmons can be tailored by engineering the geometric features of the plasmonic and photonic components of these hybrid structures. NAA-GIFs with well-resolved, intense photonic stopbands at two positions of the visible spectrum were fabricated through sinusoidal pulse anodization. These model photonic crystals were used to assess how the quality of Tamm plasmon resonances can be enhanced by tuning the features of the dielectric mirror and the thickness of the porous gold coating layer. It is found that the highest value of the quality factor of Tamm resonance (Q Tamm = 237) is obtained for 11 nm of gold on a dielectric mirror with low porosity corresponding to the resonant spectral position of λTamm of ∼698 nm. Our analysis indicates that Tamm resonances in as-produced Au-coated NAA-GIFs are weak due to the constrained range of wavelengths (narrow bands) at which these photonic crystal structures reflect light. However, after broadening of their photonic stopband upon pore widening, Tamm resonances become better resolved, with higher intensity. It is also observed that the quality of light confinement worsens progressively with the thickness of the porous gold coating layer after a critical value. In contrast to conventional surface plasmon resonance systems, this hybrid Tamm porous system does not require complex coupling systems and provides a nanoporous structure that can be readily tailored for a range of photonic technologies such as sensing and lasing.

14.
ACS Appl Mater Interfaces ; 15(39): 45981-45996, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37722029

RESUMO

The distribution of oxygen and aluminum vacancies across the hemispherical barrier oxide layer (BOL) of nanoporous anodic alumina (NAA) relies intrinsically on the electric field-driven flow of electrolytic species and the incorporation of electrolyte impurities during the growth of anodic oxide through anodization. This phenomenon provides new opportunities to engineer BOL's inherited ionic current rectification (ICR) fingerprints. NAA's characteristic ICR signals are associated with the space charge density gradient across BOL and electric field-induced ion migration through hopping from vacancy to vacancy. In this study, we engineer the intrinsic space charge density gradient of the BOL of NAA under a range of anodizing potentials in hard and mild anodization regimes. Real-time characterization of the ICR fingerprints of NAA during selective etching of the BOL makes it possible to unravel the distribution pattern of vacancies through rectification signals as a function of etching direction and time. Our analysis demonstrates that the space charge density gradient varies across the BOL of NAA, where the magnitude and distribution of the space charge density gradient are revealed to be critically determined by anodizing the electrolyte, regime, and potential. This study provides a comprehensive understanding of the engineering of ion transport behavior across blind-hole NAA membranes by tuning the distribution of defects across BOL through anodization conditions. This method has the potential to be harnessed for developing nanofluidic devices with tailored ionic rectification properties for energy generation and storage and sensing applications.

15.
Micromachines (Basel) ; 13(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36422456

RESUMO

Miniaturized mechanical testing based on small sample testing technology is a powerful technique to characterize the mechanical properties of different materials, and it is being used in different application fields. However, the small size of the specimens poses several challenges because the results are highly sensitive to measurement accuracy and the corresponding mechanical properties can change substantially due to the so-called specimen size effect. In this work, a novel testing device based on miniaturized specimens is presented. The equipment is designed to test materials in tensile and compressive loadings, but it is also capable of performing reverse-loading tests. Buckling of the specimen is an inherent phenomenon in compression loadings, especially for thin materials. Therefore, specimen geometry is properly studied and optimized to mitigate this effect. To evaluate the deformation of the specimen, the digital image correlation (DIC) technique is used to capture the full-field strain in the central gauge section of the sample. A sensitivity analysis of the DIC setting parameters was performed for this application. To evaluate the performance of the developed system, experimental results of monotonic tests and tests with reverse loadings (tension-compression) are presented, considering two high-strength steels (DP500 and DP780).

16.
ACS Appl Mater Interfaces ; 14(18): 21181-21197, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35485719

RESUMO

The hemispherical barrier oxide layer (BOL) closing the bottom tips of hexagonally distributed arrays of cylindrical nanochannels in nanoporous anodic alumina (NAA) membranes is structurally engineered by anodizing aluminum substrates in three distinct acid electrolytes at their corresponding self-ordering anodizing potentials. These nanochannels display a characteristic ionic current rectification (ICR) signal between high and low ionic conduction states, which is determined by the thickness and chemical composition of the BOL and the pH of the ionic electrolyte solution. The rectification efficiency of the ionic current associated with the flow of ions across the anodic BOL increases with its thickness, under optimal pH conditions. The inner surface of the nanopores in NAA membranes was chemically modified with thiol-terminated functional molecules. The resultant NAA-based iontronic system provides a model platform to selectively detect gold metal ions (Au3+) by harnessing dynamic ICR signal shifts as the core sensing principle. The sensitivity of the system is proportional to the thickness of the barrier oxide layer, where NAA membranes produced in phosphoric acid at 195 V with a BOL thickness of 232 ± 6 nm achieve the highest sensitivity and low limit of detection in the sub-picomolar range. This study provides exciting opportunities to engineer NAA structures with tailorable ICR signals for specific applications across iontronic sensing and other nanofluidic disciplines.

17.
Int J Mater Form ; 15(5): 61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855077

RESUMO

This article details the ESAFORM Benchmark 2021. The deep drawing cup of a 1 mm thick, AA 6016-T4 sheet with a strong cube texture was simulated by 11 teams relying on phenomenological or crystal plasticity approaches, using commercial or self-developed Finite Element (FE) codes, with solid, continuum or classical shell elements and different contact models. The material characterization (tensile tests, biaxial tensile tests, monotonic and reverse shear tests, EBSD measurements) and the cup forming steps were performed with care (redundancy of measurements). The Benchmark organizers identified some constitutive laws but each team could perform its own identification. The methodology to reach material data is systematically described as well as the final data set. The ability of the constitutive law and of the FE model to predict Lankford and yield stress in different directions is verified. Then, the simulation results such as the earing (number and average height and amplitude), the punch force evolution and thickness in the cup wall are evaluated and analysed. The CPU time, the manpower for each step as well as the required tests versus the final prediction accuracy of more than 20 FE simulations are commented. The article aims to guide students and engineers in their choice of a constitutive law (yield locus, hardening law or plasticity approach) and data set used in the identification, without neglecting the other FE features, such as software, explicit or implicit strategy, element type and contact model.

18.
Artigo em Inglês | MEDLINE | ID: mdl-34639766

RESUMO

The phenomenon of dropout is often found among customers of sports services. In this study we intend to evaluate the performance of machine learning algorithms in predicting dropout using available data about their historic use of facilities. The data relating to a sample of 5209 members was taken from a Portuguese fitness centre and included the variables registration data, payments and frequency, age, sex, non-attendance days, amount billed, average weekly visits, total number of visits, visits hired per week, number of registration renewals, number of members referrals, total monthly registrations, and total member enrolment time, which may be indicative of members' commitment. Whilst the Gradient Boosting Classifier had the best performance in predicting dropout (sensitivity = 0.986), the Random Forest Classifier was the best at predicting non-dropout (specificity = 0.790); the overall performance of the Gradient Boosting Classifier was superior to the Random Forest Classifier (accuracy 0.955 against 0.920). The most relevant variables predicting dropout were "non-attendance days", "total length of stay", and "total amount billed". The use of decision trees provides information that can be readily acted upon to identify member profiles of those at risk of dropout, giving also guidelines for measures and policies to reduce it.


Assuntos
Academias de Ginástica , Algoritmos , Aprendizado de Máquina
19.
Artigo em Inglês | MEDLINE | ID: mdl-34664952

RESUMO

Model light-confining Tamm plasmon cavities based on gold-coated nanoporous anodic alumina photonic crystals (TMM-NAA-PCs) with spectrally tunable resonance bands were engineered. Laplacian and Lorentzian NAA-PCs produced by a modified Gaussian-like pulse anodization approach showed well-resolved, high-quality photonic stopbands, the position of which was precisely controlled across the visible spectrum by the periodicity in the input anodization profile. These PC structures were used as a platform material to develop highly reflective distributed Bragg mirrors, the top sides of which were coated with a thin gold film. The resulting nanoporous hybrid plasmonic-photonic crystals showed strong light-confining properties attributed to Tamm plasmon resonances at three specific positions of the visible spectrum. These structures achieved high sensitivity to changes in refractive index, with a sensitivity of ∼106 nm RIU-1. The optical sensitivity of TMM-NAA-PCs was assessed in real time, using a model chemically selective binding interaction between thiol-containing molecules and gold. The optical sensitivity was found to rely linearly on the spectral position of the Tamm resonance band, for both Laplacian and Lorentzian TMM-NAA-PCs. The density of self-assembled monolayers of thiol-containing analyte molecules formed on the surface of the metallic film directly contributes to the dependence of sensitivity on TMM resonance position in these optical transducers. Our findings provide opportunities to integrate TMM modes in NAA-based photonic crystal structures, with promising potential for optical technologies and applications requiring high-quality surface plasmon resonance bands.

20.
ACS Appl Mater Interfaces ; 13(12): 14394-14406, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33733749

RESUMO

Nanoporous anodic alumina optical microcavities (NAA-µQVs) with spectrally tunable resonance band and surface chemistry are used as model light-confining photonic crystal (PC) platforms to elucidate the combined effect of spectral light confinement features and surface chemistry on optical sensitivity. These model nanoporous PCs show well-resolved, spectrally tunable resonance bands (RBs), the central wavelength of which is engineered from ∼400 to 800 nm by the period of the input anodization profile. The optical sensitivity of the as-produced (hydrophilic) and dichlorodimethylsilane-functionalized (hydrophobic) NAA-µQVs is studied by monitoring dynamic spectral shifts of their RB upon infiltration with organic- and aqueous-based analytical solutions of equally varying refractive index, from 1.333 to 1.345 RIU. Our findings demonstrate that hydrophilic NAA-µQVs show ∼81 and 35% superior sensitivity to their hydrophobic counterparts for organic- and aqueous-based analytical solutions, respectively. Interestingly, the sensitivity of hydrophilic NAA-µQVs per unit of spectral shift is more than 3-fold higher in organic than in aqueous matrices upon equal change of refractive index, with values of 0.347 ± 0.002 and 0.109 ± 0.001 (nm RIU-1) nm-1, respectively. Conversely, hydrophobic NAA-µQVs are found to be slightly more sensitive toward changes of refractive index in aqueous medium, with sensitivities of 0.072 ± 0.002 and 0.066 ± 0.006 (nm RIU-1) nm-1 in water- and organic-based analytical solutions, respectively. Our advances provide insights into critical factors determining optical sensitivity in light-confining nanoporous PC structures, with implications across optical sensing applications, and other photonic technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA