Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(8): 256, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955831

RESUMO

Antimicrobial resistance is a global health issue, in which microorganisms develop resistance to antimicrobial drugs, making infections more difficult to treat. This threatens the effectiveness of standard medical treatments and necessitates the urgent development of new strategies to combat resistant microbes. Studies have increasingly explored natural sources of new antimicrobial agents that harness the rich diversity of compounds found in plant species. This pursuit holds promise for the discovery of novel treatments for combating antimicrobial resistance. In this context, the chemical composition, antibacterial, and antibiofilm activities of the essential oil from Croton urticifolius Lam. leaves (CuEO) were evaluated. CuEO was extracted via hydrodistillation, and its chemical constituents were identified via gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of CuEO was evaluated in a 96-well plate via the microdilution method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined. The effect of CuEO on biofilm formation was assessed by quantifying the biomass using crystal violet staining and viable cell counting. In addition, alterations in the cellular morphology of biofilms treated with CuEO were examined using scanning electron microscopy (SEM) and laser confocal microscopy. GC/MS analysis identified 26 compounds, with elemicine (39.72%); eucalyptol (19.03%), E-caryophyllene (5.36%), and methyleugenol (4.12%) as the major compounds. In terms of antibacterial activity, CuEO showed bacteriostatic effects against Staphylococcus aureus ATCC 700698, S. aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, and Escherichia coli ATCC 11303, and bactericidal activity against S. aureus ATCC 700698. In addition, CuEO significantly inhibited bacterial biofilm formation. Microscopic analysis showed that CuEO damaged the bacterial membrane by leaching out the cytoplasmic content. Therefore, the results of this study show that the essential oil of C. urticifolius may be a promising natural alternative for preventing infections caused by bacterial biofilms. This study is the first to report the antibiofilm activity of C. urticifolius essential oil.


Assuntos
Antibacterianos , Biofilmes , Croton , Testes de Sensibilidade Microbiana , Óleos Voláteis , Folhas de Planta , Biofilmes/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Croton/química , Antibacterianos/farmacologia , Antibacterianos/química , Folhas de Planta/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Membrana Celular/efeitos dos fármacos
2.
Chem Biodivers ; : e202400935, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818650

RESUMO

The study focuses on the anxiolytic potential of chalcone (2E,4E)-1-(2-hydroxyphenyl)-5-phenylpenta-2,4-dien-1-one (CHALCNM) in adult zebrafish. Successfully synthesized in 58% yield, CHALCNM demonstrated no toxicity after 96 h of exposure. In behavioral tests, CHALCNM (40 mg/kg) reduced locomotor activity and promoted less anxious behavior in zebrafish, confirmed by increased permanence in the light zone of the aquarium. Flumazenil reversed its anxiolytic effect, indicating interaction with GABAA receptors. Furthermore, CHALCNM (4 and 20 mg/kg) preserved zebrafish memory in inhibitory avoidance tests. Virtual screening and ADMET profile studies suggest high oral bioavailability, access to the CNS, favored by low topological polarity (TPSA ≤ 75 Ų) and low incidence of hepatotoxicity, standing out as a promising pharmacological agent against the GABAergic system. In molecular coupling, CHALCNM demonstrated superior affinity to diazepam for the GABAA receptor. These results reinforce the therapeutic potential of CHALCNM in the treatment of anxiety, highlighting its possible future clinical application.

3.
Chem Biodivers ; : e202400538, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639566

RESUMO

This is the first study to analyze the anti-inflammatory and antinociceptive effect of withanicandrin, isolated from Datura Ferox leaves, and the possible mechanism of action involved in adult zebrafish (ZFa). To this end, the animals were treated intraperitoneally (i. p.) with withanicandrin (4; 20 and 40 mg/kg; 20 µL) and subjected to locomotor activity and acute toxicity. Nociception tests were also carried out with chemical agents, in addition to tests to evaluate inflammatory processes induced by κ-Carrageenan 1.5 % and a Molecular Docking study. As a result, withanicandrin reduced nociceptive behavior by capsaicin at a dose of 40 mg/kg and by acid saline at doses of 4 and 40 mg/kg, through neuromodulation of TRPV1 channels and ASICs, identified through blocking the antinociceptive effect of withanicandrin by the antagonists capsazepine and naloxone. Furthermore, withanicandrin caused an anti-inflammatory effect through the reduction of abdominal edema, absence of leukocyte infiltrate in the liver tissue and reduction of ROS in thel liver tissue and presented better affinity energy compared to control morphine (TRPV1) and ibuprofen (COX-1 and COX-2).

4.
Microb Pathog ; 180: 106129, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119940

RESUMO

The increased resistance of microorganisms to antimicrobial drugs makes it necessary to search for new active compounds, such as chalcones. Their simple chemical structure makes them molecules easy to synthesize. Therefore, the aim of this study was to evaluate the antimicrobial and potentiating activity of antibiotics and antifungals by synthetic chalcones against strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Candida tropicalis. The synthesis of chalcones was carried out by Claisen-Schimidt aldol condensation. Nuclear Magnetic Resonance (NMR) and Gas Chromatography Coupled to Mass Spectrometry (GC/MS) were also performed. Microbiological tests were performed by the broth microdilution method, using gentamicin, norfloxacin and penicillin as standard drugs for the antibacterial assay, and fluconazole for the antifungal assay. Three chalcones were obtained (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one (DB-Acetone), (1E,3E,6E,8E)-1,9-diphenylnone-1,3,6,8-tetraen-5-one (DB-CNM), (1E,4E)-1,5-bis (4-methoxyphenyl) penta-1,4-dien-3-one (DB-Anisal). The compound DB-Acetone was able to inhibit P. aeruginosa ATCC 9027 at a concentration of 1.4 × 102 µM (32 µg/mL), while DB-CNM and DB-Anisal inhibited the growth of S. aureus ATCC 25923 at 17.88 × 102 µM and 2.71 × 101 µM (512 µg/mL and 8 µg/mL) respectively. In the combined activity, DB-Anisal was able to potentiate the effect of the three antibacterial drugs tested against E. coli 06, norfloxacin (128 for 4 µg/mL ±1) against P. aeruginosa 24 and penicillin (1,024 for 16 µg/mL ±1) against S. aureus 10. In antifungal assays, chalcones were not able to inhibit the growth of fungal strains tested. However, both showed potentiating activity with fluconazole, ranging from 8.17 x 10-1 µM (0.4909 µg/mL) to 2.35 µM (13.96 µg/mL). It is concluded that synthetic chalcones have antimicrobial potential, demonstrating good intrinsic activity against fungi and bacteria, in addition to potentiating the antibiotics and antifungal tested. Further studies are needed addressing the mechanisms of action responsible for the results found in this work.


Assuntos
Anti-Infecciosos , Chalconas , Antifúngicos/química , Fluconazol/farmacologia , Chalconas/farmacologia , Chalconas/química , Staphylococcus aureus , Norfloxacino/farmacologia , Escherichia coli , Acetona/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Candida albicans , Penicilinas/farmacologia , Testes de Sensibilidade Microbiana
5.
Planta Med ; 89(10): 979-989, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36940928

RESUMO

Rauvolfia species are well known as producers of bioactive monoterpene indole alkaloids, which exhibit a broad spectrum of biological activities. A new vobasine-sarpagan-type bisindole alkaloid (1: ) along with six known monomeric indoles (2, 3/4, 5: , and 6/7: ) were isolated from the ethanol extract of the roots of Rauvolfia ligustrina. The structure of the new compound was elucidated by interpretation of their spectroscopic data (1D and 2D NMR and HRESIMS) and comparison with published data for analog compounds. The cytotoxicity of the isolated compounds was screened in a zebrafish (Danio rerio) model. The possible GABAergic (diazepam as the positive control) and serotoninergic (fluoxetine as the positive control) mechanisms of action in adult zebrafish were also evaluated. No compounds were cytotoxic. Compound 2: and the epimers 3: /4: and 6: /7: showed a mechanism action by GABAA, while compound 1: showed a mechanism action by a serotonin receptor (anxiolytic activity). Molecular docking studies showed that compounds 2: and 5: have a greater affinity by the GABAA receptor when compared with diazepam, whereas 1: showed the best affinity for the 5HT2AR channel when compared to risperidone.


Assuntos
Alcaloides , Ansiolíticos , Antineoplásicos , Rauwolfia , Animais , Rauwolfia/química , Ansiolíticos/farmacologia , Peixe-Zebra , Simulação de Acoplamento Molecular , Alcaloides Indólicos/química , Diazepam/farmacologia , Receptores de GABA-A , Estrutura Molecular
6.
Curr Microbiol ; 80(5): 176, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029832

RESUMO

Antimicrobial resistance is a natural phenomenon and is becoming a huge global public health problem, since some microorganisms not respond to the treatment of several classes of antibiotics. The objective of the present study was to evaluate the antibacterial, antibiofilm, and synergistic effect of triterpene 3ß,6ß,16ß-trihydroxyilup-20(29)-ene (CLF1) against Staphylococcus aureus and Staphylococcus epidermidis strains. Bacterial susceptibility to CLF1 was evaluated by minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assay. In addition, the effect combined with antibiotics (ampicillin and tetracycline) was verified by the checkerboard method. The biofilms susceptibility was assessed by enumeration of colony-forming units (CFUs) and quantification of total biomass by crystal violet staining. The compound showed bacteriostatic and bactericidal activity against all Staphylococcal strains tested. The synergistic effect with ampicillin was observed only for S. epidermidis strains. Moreover, CLF1 significantly inhibited the biofilm formation and disrupted preformed biofilm of the all strains. Scanning electron microscopy (SEM) images showed changes in the cell morphology and structure of S. aureus ATCC 700698 biofilms (a methicillin-resistant S. aureus strain). Molecular docking simulations showed that CLF1 has a more favorable interaction energy than the antibiotic ampicillin on penicillin-binding protein (PBP) 2a of MRSA, coupled in different regions of the protein. Based on the results obtained, CLF1 proved to be a promising antimicrobial compound against Staphylococcus biofilms.


Assuntos
Combretum , Staphylococcus aureus Resistente à Meticilina , Triterpenos , Staphylococcus aureus , Combretum/química , Staphylococcus , Triterpenos/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Ampicilina/farmacologia , Biofilmes , Staphylococcus epidermidis , Testes de Sensibilidade Microbiana
7.
Phys Chem Chem Phys ; 24(8): 5052-5069, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35144275

RESUMO

Chagas disease is a leading public health problem. More than 8 million people are affected by the disease, which is endemic in 21 countries in Latin America, generating an average annual cost of 7.2 billion dollars per year. The conventional treatment of Chagas disease is carried out by administering the drug benznidazole (BZN), which has caused numerous adverse reactions. Hence, the search for new, more efficient, and less toxic anti-chagasic agents is essential. Recently, chalcones have been researched to propose new therapies against neglected diseases, mainly Trypanosoma cruzi. The objective of this work was to evaluate for the first time the antiproliferative potential of chalcone derived from the natural product on T. cruzi strain Y. The molecular structure of the chalcone was confirmed by spectrometric data. The toxicity of chalcone in LLC-MK2 cells indicated that a concentration of 514.10 ± 62.40 µM was able to reduce cell viability by 50%. Regarding the effect of chalcone on epimastigote forms, an IC50 value of 46.57 ± 9.81 µM was observed; 45.92 ± 8.42 and 16.32 ± 3.41 µM at times of 24, 48 and 72 hours, respectively. The chalcone was able to eliminate trypomastigote forms at all concentrations tested, except for 31.25 µM, with LC50 values of 117.90 ± 12.60 µM, lower than the reference drug BZN (161.40 ± 31. 80 µM). The mechanism of action may be related to the membrane damage provoked by reduction of the mitochondrial potential. The anti-T. cruzi effect can be assigned through some structural aspects of the chalcone as the nitro group (NO2) is present, which can be enzymatically reduced forming a nitro radical, and the presence of methoxyl groups in the A ring of the chalcone. In silico studies showed that the chalcone had a higher affinity for cruzain when compared to BZN and the co-crystallized inhibitor KB2, as it presented a more thermodynamically stable complex in the order of -6.9 kcal mol-1. The pharmacokinetic prediction showed a significant probability of antiprotozoal activity, a good volume of distribution after being absorbed in the intestine, and a low chance of activity in the central nervous system. Therefore, these results suggest that the chalcone can become a potential cruzain enzyme inhibitor with trypanocidal activity.


Assuntos
Chalcona , Tripanossomicidas , Produtos Biológicos , Chalcona/farmacologia , Humanos , Simulação de Acoplamento Molecular , Tripanossomicidas/farmacologia , Trypanosoma cruzi/metabolismo
8.
Biochem Biophys Res Commun ; 534: 478-484, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261884

RESUMO

Croton zehntneri is a plant known as canelinha de cunhã, prevalent in the northeast region of Brazil. Many constituents of the vegetable have already been studied, and their pharmacological properties have been proven, but this is the first study to analyze the antinociceptive effect in adult zebrafish (ZFa) of the triterpene acetyl aleuritolic acid (AAA) isolated from the stem bark. The animals (ZFa; n = 6/group) were treated intraperitoneally (ip; 20 µL) with AAA (0.1 or 0.3 or 1.0 mg/mL) or vehicle (0.9% saline; 20 µL), and submitted to the locomotor activity test, as well as 96 h acute toxicity. Other groups (n = 6/each) received the same treatments and underwent acute nociception tests (formalin, cinnamaldehyde, glutamate, acid saline, capsaicin, and hypertonic saline). Possible neuromodulation mechanisms were evaluated. AAA (0.1 or 0.3 or 1.0 mg/mL) reduced the nociceptive behavior induced by acid saline and capsaicin, as well as inhibited corneal nociception induced by hypertonic saline, both without altering the animals' locomotor system and without toxicity. These analgesic effects of AAA were significantly (p > 0.05) similar to those of morphine, used as a positive control. The antinociceptive effect of AAA was inhibited by methylene blue, ketamine, camphor, ruthenium red, amiloride, and mefenamic acid. The antinociceptive effect of AAA on the cornea of animals was inhibited by capsazepine. Therefore, AAA showed pharmacological potential for the treatment of acute pain, and this effect is modulated by cGMP, NMDA receptors, transient receptor potential channels (TRPs), ASICs and has pharmacological potential for the treatment of corneal pain modulated by the TRPV1 channel.


Assuntos
Analgésicos/farmacologia , Nociceptividade/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Triterpenos/farmacologia , Analgésicos/química , Animais , Córnea/efeitos dos fármacos , Córnea/fisiologia , Croton/química , Modelos Moleculares , Ácidos Palmíticos/química , Triterpenos/química , Peixe-Zebra/fisiologia
9.
Arch Microbiol ; 203(7): 4727-4736, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34052872

RESUMO

Infectious diseases caused by multidrug-resistant microorganisms has increased in the last years. Piper species have been reported as a natural source of phytochemicals that can help in combating fungal and bacterial infections. This study had as objectives characterize the chemical composition of the essential oil from Piper caldense (EOPC), evaluate its potential antimicrobial activity, and investigate the synergistic effect with Norfloxacin against multidrug-resistant S. aureus overproducing efflux pumps, as well as, verify the EOPC ability to inhibit the Candida albicans filamentation. EOPC was extracted by hydrodistillation, and the chemical constituents were identified by gas chromatography, allowing the identification of 24 compounds (91.9%) classified as hydrocarbon sesquiterpenes (49.6%) and oxygenated sesquiterpenes (39.5%). Antimicrobial tests were performed using a 96-well plate microdilution method against C. albicans ATCC 10231, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 standard strains, as well as against multidrug-resistant strains S. aureus SA1199B (overexpressing norA gene), S. aureus K2068 (overexpressing mepA gene) and S. aureus K4100 (overexpressing qacC gene). The oil showed activity against C. albicans ATCC 10231 (≥ 512 µg/mL) and was able to inhibit hyphae formation, an important mechanism of virulence of C. albicans. On the other hand, EOPC was inactive against all bacterial strains tested (≤ 1,024 µg mL). However, when combined with Norfloxacin at subinhibitory concentration EOPC reduced the Norfloxacin and Ethidium bromide MIC values against S. aureus strains SA1199B, K2068 and K4100. These results indicate that EOPC is a source of phytochemicals acting as NorA, MepA and QacC inhibitors.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus Resistente à Meticilina , Norfloxacino , Óleos Voláteis , Piper , Staphylococcus aureus , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Norfloxacino/química , Norfloxacino/farmacologia , Óleos Voláteis/farmacologia , Piper/química , Piper/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética
10.
Arch Microbiol ; 204(1): 63, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940944

RESUMO

The Staphylococcus aureus bacteria is a Gram-positive, immobile, non-spore bacterium, with catalase and positive coagulase, among other characteristics. It is responsible for important infections caused in the population and for hospital infections. Because of that many strategies are being developed to combat the resistance of microorganisms to drugs, in recent times, chalcones have been studied for this purpose. Chalcones are found in parts of plants and can be found, for example, in the roots, leaves, bark, among others, but are mainly found as petal pigments, they are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities. This study aimed to evaluate the ability of chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one to reverse the efflux pump resistance, present in the bacteria S. aureus 1199B and S. aureus K2068. The synthetic chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one was able to synergistically modulate the antibiotic Ciprofloxacino and Ethidium Bromide against the bacterial strain S. aureus K2068, and with the antibiotic Norfloxacino against the strain 1199B. Thus, it is suggested that this chalcone may be acting by inhibiting the efflux pump mechanism of these bactéria. The theoretical physicochemical and pharmacokinetic properties of chalcone showed that the chalocne did not present a severe risk of toxicity, such as genetic mutation or cardiotoxicity. Molecular docking showed that the chalcone could act as a competitive inhibitor of the MepA efflux pump, as at hinders the binding of other substrates, such as EtBr.


Assuntos
Chalcona , Chalconas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chalcona/farmacologia , Chalconas/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Staphylococcus aureus/metabolismo
11.
Epilepsy Behav ; 117: 107881, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33711684

RESUMO

In the treatment of anxiety and seizures, drugs of the benzodiazepine (BZD) class are used, which act on the Central Nervous System (CNS) through the neurotransmitter gamma-aminobutyric acid (GABA). Flavonoids modulate GABAA receptors. The aim of this study was to evaluate the anxiolytic and anticonvulsant effects of synthetic chalcones and their mechanisms of action via the GABAergic system, using adult zebrafish (ZFa). The animals were treated with chalcones (4.0 or 20 or 40 mg/kg; 20 µL; i.p) and submitted to the open field and 96 h toxicity test. Chalcones that cause locomotor alteration were evaluated in the light and dark anxiolytic test. The same doses of chalcones were evaluated in the anticonvulsant test. The lowest effective dose was chosen to assess the possible involvement in the GABAA receptor by blocking the flumazenil (fmz) antagonist. No chalcone was toxic and altered ZFa's locomotion. All chalcones had anxiolytic and anticonvulsant effects, mainly chalcones 1, where all doses showed effects in both tests. These effects were blocked by Fmz (antagonist GABAA), where it shows evidence of the performance of these activities of the GABA system. Therefore, this study demonstrated in relation to structure-activity, that the position of the substituents is important in the intensity of activities and that the absence of toxicity and the action of these compounds in the CNS, shows the pharmacological potential of these molecules, and, therefore, the insights are designed for the development of new drugs.


Assuntos
Ansiolíticos , Chalconas , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Comportamento Animal , Chalconas/uso terapêutico , Receptores de GABA-A , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Peixe-Zebra
12.
Curr Microbiol ; 78(5): 1926-1938, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33782740

RESUMO

A large number of infections are caused by Gram-positive and Gram-negative multi-resistant bacteria worldwide, adding up to a figure of around 700,000 deaths per year. The indiscriminate uses of antibiotics, as well as their misuse, resulted in the selection of bacteria resistant to known antibiotics, for which it has little or no treatment. In this way, the strategies to combat the resistance of microorganisms are extremely important and, essential oils of Croton species have been extensively studied for this purpose. The aim of this study was to carry the evaluation of antibacterial, antibiofilm, antioxidant activities, and spectroscopic investigation of essential oil from Croton piauhiensis (EOCp). The EOCp exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria with required MICs ranging from 0.15 to 5% (v/v). In addition, the MBC of the EOCp for Staphylococcus aureus ATCC 25923 and ATCC 700698, were 0.15 and 1.25%, respectively. Moreover, the EOCp significantly reduced significantly the biofilm production and the number of viable cells from the biofilm of all bacterial strains tested. The antioxidant potential of the EOCp showed EC50 values ranging from 171.21 to 4623.83 µg/mL. The EOCp caused hemolysis (>45%) at the higher concentrations tested (1.25 to 5%), and minor hemolysis (17.6%) at a concentration of 0.07%. In addition, docking studies indicated D-limonene as a phytochemical with potential for antimicrobial activity. This study indicated that the EOCp may be a potential agent against infections caused by bacterial biofilms, and act as a protective agent against ROS and oxidative stress.


Assuntos
Anti-Infecciosos , Croton , Óleos Voláteis , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Biofilmes , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia
13.
Biochem Biophys Res Commun ; 533(3): 362-367, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32962857

RESUMO

Drugs used to treat pain are associated with adverse effects, increasing the search for new drugs as an alternative treatment for pain. Therefore, we evaluated the antinociceptive behavior and possible neuromodulation mechanisms of triterpene 3ß, 6ß, 16ß-trihydroxylup-20(29)-ene (CLF-1) isolated from Combretum leprosum leaves in zebrafish. Zebrafish (n = 6/group) were pretreated with CLF-1 (0.1 or 0.3 or 1.0 mg/mL; i.p.) and underwent nociception behavior tests. The antinociceptive effect of CFL-1 was tested for modulation by opioid (naloxone), nitrergic (L-NAME), nitric oxide and guanylate cyclase synthesis inhibitor (methylene blue), NMDA (Ketamine), TRPV1 (ruthenium red), TRPA1 (camphor), or ASIC (amiloride) antagonists. The corneal antinociceptive effect of CFL-1 was tested for modulation by TRPV1 (capsazepine). The effect of CFL-1 on zebrafish locomotor behavior was evaluated with the open field test. The acute toxicity study was conducted. CLF-1 reduced nociceptive behavior and corneal in zebrafish without mortalities and without altering the animals' locomotion. Thus, CFL-1 presenting pharmacological potential for the treatment of acute pain and corneal pain, and this effect is modulated by the opioids, nitrergic system, NMDA receptors and TRP and ASIC channels.


Assuntos
Analgésicos/farmacologia , Combretum/química , Locomoção/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Dor/prevenção & controle , Triterpenos/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Amilorida/farmacologia , Analgésicos/isolamento & purificação , Animais , Cânfora/farmacologia , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Ketamina/farmacologia , Locomoção/fisiologia , Masculino , Azul de Metileno/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Naloxona/farmacologia , Nociceptividade/fisiologia , Dor/metabolismo , Dor/fisiopatologia , Medição da Dor , Extratos Vegetais/química , Folhas de Planta/química , Receptores de N-Metil-D-Aspartato/metabolismo , Rutênio Vermelho/farmacologia , Canais de Cátion TRPV/metabolismo , Triterpenos/isolamento & purificação , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
14.
Biochem Biophys Res Commun ; 526(2): 505-511, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32241546

RESUMO

The action of anxiolytic compounds that act on selective serotonin receptors (SSRIs) have been scarcely evaluated. Serotonergic drugs have been shown to be effective in treating anxiety without presenting adverse effects as benzodiazepines. However, the anxiolytic effects take days to occur. This study aimed to evaluate the anxiolytic effect of the synthetic chalcone, 4'-[(2E) -3- (3-nitrophenyl) -1- (phenyl) prop-2-en-1-one] acetamide (PAAMNBA), and its possible mechanism of action in adult zebrafish (Danio rerio). PAAMNBA was synthesized with a yield of 51.3% and its chemical structure was determined by 1H and 13C NMR. Initially, PAAPMNBA was intraperitoneally administered to zebrafish (n = 6/group) at doses of 4, 12, or 40 mg/kg, and the animals were subsequently subjected to acute and open field toxicity tests. PAAMNBA was administered to the other groups (n = 6/group) for analyzing its effect in the light and dark test. The involvement of the serotonergic (5HT) system was also evaluated using 5-HTR 1, 5-HTR 2A/2C, and 5-HTR 3A/3B receptor antagonists, namely, pizotifeo, granizetron, and ciproeptadina, respectively. Molecular coupling was performed using the 5-HT1 receptor. PAAMNBA was found to be non-toxic, reduced the locomotor activity, and had an anxiolytic effect in adult zebrafish. The effect was reduced by pretreatment with pizotifene and was not reversed by treatment with granizetron and cyproeptadine. A previous in vivo molecular coupling study indicated that chalcones interact with the 5-HT1 receptor. The results suggested that the chalcone, PAAPMNBA, has anxiolytic activity, that is mediated by the serotonergic system via the 5-HT1 receptor. The interaction of PAAPMNBA with the 5-HT1 receptor was confirmed by molecular docking studies.


Assuntos
Acetamidas/farmacologia , Ansiolíticos/farmacologia , Chalcona/farmacologia , Serotonina/metabolismo , Acetamidas/química , Animais , Ansiolíticos/química , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Chalcona/análogos & derivados , Descoberta de Drogas , Locomoção/efeitos dos fármacos , Simulação de Acoplamento Molecular , Receptores 5-HT1 de Serotonina/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
15.
Curr Microbiol ; 77(12): 3969-3977, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025183

RESUMO

Plants are natural sources of several bioactive substances, which have been found in extracts, secondary metabolites, and essential oils. Several biological activities have been attributed to essential oils as antiviral, insecticidal, antiparasitic, antioxidant, and antimicrobial. The indiscriminate use of antibiotics has increased the development of resistance mechanisms of microorganisms. Thus, search for efficient natural compounds with antimicrobial activity and low toxicity has increased, so essential oils have been a promising alternative for combating microbial infections. This study was carried out to investigate the seasonality effects on the infrared absorbance spectra, antibacterial activity, and antibiotic potentiating activity of essential oils from Vitex gardneriana leaves. Essential oils were extracted from V. gardneriana Schauer leaves the seasonal period from January to December 2016 and characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The antibacterial effect of these oils and antibiotic potentiating activity, both determined by the minimum inhibitory concentration, were assessed using microtiter plates. For the first time, we present the use of infrared absorbance spectra of these essential oils and show the influence of seasonality on them. Synergistic effects were observed for the essential oils associated with the antibiotics tested (gentamicin, ampicillin, and ofloxacin). The main influence of seasonality on the infrared absorbance spectra of the essential oils of the V. gardneriana occurred in the June month (last month of the rainy season). In regard to antibacterial activity test, the essential oils of the V. gardneriana leaves did not show a direct effect on the strains tested. However, the essential oils when associated with the antibiotics showed variations in the minimum inhibitory concentration with the months of the seasonal period, indicating synergistic effects against Escherichia coli and Staphylococcus aureus bacterial resistance.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Vitex , Antibacterianos/farmacologia , Escherichia coli , Análise de Fourier , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Folhas de Planta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus
16.
Microb Pathog ; 135: 103608, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31229603

RESUMO

This study aimed to determinate the chemical composition and evaluate the antimicrobial and antioxidant activity of the essential oil obtained from leaves of V. gardneriana. The Vitex gardneriana leaves's were hydrodistilled to obtain the essential oil and the chemical composition determined by GC/MS analysis. The antimicrobial activities were determined by microdilution method. The activity of essential oil on biofilm was evaluated by quantification of total biomass and enumeration of biofilm-entrapped viable cells. The antioxidant activity was assessed by DPPH free radical assay, ferrous ion chelating assay, ferric-reducing antioxidant power and ß-carotene bleaching assay. Furthermore, the essential oil was tested on viability of health human, animal cells and the microcrustacean Artemia sp. The essential oil showed high content of sesquiterpenes and very low content of monoterpenes. Regarding activity on planktonic cells, the essential oil reduced the growth of the all species tested but showed MIC values only to S. aureus (0.31%). In general, the essential oil reduced significantly the biofilm biomass and the number of viable cells of bacteria and yeasts, mainly on biofilm formation. The essential oil showed a potential antioxidant activity, mainly on ß-carotene oxidation. Moreover, the essential oil reduced the cell viability of murine fibroblasts but not show viability reduction of human keratinocytes. Furthermore, the oil not show toxicity against the microcrustacean. Thus, the essential oil from V. gardneriana leaves may be considered as an important alternative against biofilms formed by bacteria and yeasts related to infections, as well as a natural antioxidant and non-toxic substance on human cells.


Assuntos
Anti-Infecciosos/química , Antioxidantes/química , Óleos Voláteis/química , Extratos Vegetais/química , Folhas de Planta/química , Vitex/química , Animais , Anti-Infecciosos/farmacologia , Artemia/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Brasil , Candida/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Monoterpenos/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , beta Caroteno
17.
Molecules ; 24(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717766

RESUMO

The study investigated the antimicrobial activity of the essential oil extract of Ocimum gratissimum L. (EOOG) against multiresistant microorganisms in planktonic and biofilm form. Hydrodistillation was used to obtain the EOOG, and the analysis of chemical composition was done by gas chromatography coupled with mass spectrometry (GC/MS) and flame ionization detection (GC/FID). EOOG biological activity was verified against isolates of Staphylococcus aureus and Escherichia coli, using four strains for each species. The antibacterial action of EOOG was determined by disk diffusion, microdilution (MIC/MBC), growth curve under sub-MIC exposure, and the combinatorial activity with ciprofloxacin (CIP) and oxacillin (OXA) were determined by checkerboard assay. The EOOG antibiofilm action was performed against the established biofilm and analyzed by crystal violet, colony-forming unit count, and SEM analyses. EOOG yielded 1.66% w/w, with eugenol as the major component (74.83%). The MIC was 1000 µg/mL for the most tested strains. The growth curve showed a lag phase delay for both species, mainly S. aureus, and reduced the growth level of E. coli by half. The combination of EOOG with OXA and CIP led to an additive action for S. aureus. A significant reduction in biofilm biomass and cell viability was verified for S. aureus and E. coli. In conclusion, EOOG has relevant potential as a natural alternative to treat infections caused by multiresistant strains.


Assuntos
Escherichia coli/efeitos dos fármacos , Ocimum/química , Óleos Voláteis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Oxacilina/farmacologia
18.
Mol Biotechnol ; 66(2): 254-269, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37079267

RESUMO

Tinnitus is a syndrome that affects the human auditory system and is characterized by a perception of sounds in the absence of acoustic stimuli, or in total silence. Research indicates that muscarinic acetylcholine receptors (mAChRs), especially the M1 type, have a fundamental role in the alterations of auditory perceptions of tinnitus. Here, a series of computer-aided tools were used, from molecular surface analysis software to services available on the web for estimating pharmacokinetics and pharmacodynamics. The results infer that the low lipophilicity ligands, that is, the 1a-d alkyl furans, present the best pharmacokinetic profile, as compounds with an optimal alignment between permeability and clearance. However, only ligands 1a and 1b have properties that are safe for the central nervous system, the site of cholinergic modulation. These ligands showed similarity with compounds deposited in the European Molecular Biology Laboratory chemical (ChEMBL) database acting on the mAChRs M1 type, the target selected for the molecular docking test. The simulations suggest that the 1 g ligand can form the ligand-receptor complex with the best affinity energy order and that, together with the 1b ligand, they are competitive agonists in relation to the antagonist Tiotropium, in addition to acting in synergism with the drug Bromazepam in the treatment of chronic tinnitus.


Assuntos
Receptor Muscarínico M1 , Zumbido , Humanos , Receptor Muscarínico M1/química , Acetilcolina/farmacologia , Simulação de Acoplamento Molecular , Ligantes , Zumbido/tratamento farmacológico
19.
Braz J Microbiol ; 55(2): 1647-1654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38374323

RESUMO

The Enterobacteriaceae family is recognized as a primary group of Gram-negative pathogens responsible for foodborne illnesses and is frequently associated with antibiotic resistance. The present study explores the natural-based compound trans-cinnamaldehyde (TC) against drug-resistant Enterobacteriaceae and its synergism with gentamicin (GEN) to address this issue. The research employs three strains of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae, previously isolated from shrimp. The antibacterial activity was evaluated by the disk diffusion method, microdilution test, kinetics of growth, and time-kill curve. In addition, the synergistic effect between TC/GEN was investigated by checkerboard assay. All strains showed sensitivity to TC with an inhibition zone diameter > 35 mm. The TC showed inhibitory and bactericidal action in the most tested bacteria around 625 µg/mL. Sub-inhibitory amounts (1/2 and 1/4 MIC) of TC interfered with the growth kinetics by lag phase extension and decreased the log phase. Time-kill curves show a reduction of viable cells after the first hour of TC treatment at bactericidal concentrations. The synergistic effect between TC/GEN was observed for E. coli and E. cloacae strains with FICi ranging from 0.15 to 0.50. These findings, therefore, suggest TC as a promising alternative in the fight against drug-resistant Enterobacteriaceae that can cause foodborne illnesses.


Assuntos
Acroleína , Antibacterianos , Sinergismo Farmacológico , Enterobacteriaceae , Gentamicinas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Gentamicinas/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/crescimento & desenvolvimento , Acroleína/análogos & derivados , Acroleína/farmacologia , Animais , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle
20.
Nat Prod Bioprospect ; 14(1): 16, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383833

RESUMO

According to The World Alzheimer Report 2023 by Alzheimer's Disease International (ADI) estimates that 33 to 38.5 million people worldwide suffer from Alzheimer's Disease (AD). A crucial hallmark associated with this disease is associated with the deficiency of the brain neurotransmitter acetylcholine, due to an affected acetylcholinesterase (AChE) activity. Marine organisms synthesize several classes of compounds, some of which exhibit significant AChE inhibition, such as petrosamine, a coloured pyridoacridine alkaloid. The aim of this work was to characterize the activity of petrosamine isolated for the first time from a Brazilian marine sponge, using two neurotoxicity models with aluminium chloride, as exposure to aluminium is associated with the development of neurodegenerative diseases. The in vitro model was based in a neuroblastoma cell line and the in vivo model exploited the potential of zebrafish (Danio rerio) embryos in mimicking hallmarks of AD. To our knowledge, this is the first report on petrosamine's activity over these parameters, either in vitro or in vivo, in order to characterize its full potential for tackling neurotoxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA