Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35312773

RESUMO

During development, the heart grows by addition of progenitor cells to the poles of the primordial heart tube. In the zebrafish, Wilms tumor 1 transcription factor a (wt1a) and b (wt1b) genes are expressed in the pericardium, at the venous pole of the heart. From this pericardial layer, the proepicardium emerges. Proepicardial cells are subsequently transferred to the myocardial surface and form the epicardium, covering the myocardium. We found that while wt1a and wt1b expression is maintained in proepicardial cells, it is downregulated in pericardial cells that contributes cardiomyocytes to the developing heart. Sustained wt1b expression in cardiomyocytes reduced chromatin accessibility of specific genomic loci. Strikingly, a subset of wt1a- and wt1b-expressing cardiomyocytes changed their cell-adhesion properties, delaminated from the myocardium and upregulated epicardial gene expression. Thus, wt1a and wt1b act as a break for cardiomyocyte differentiation, and ectopic wt1a and wt1b expression in cardiomyocytes can lead to their transdifferentiation into epicardial-like cells.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Regulação da Expressão Gênica no Desenvolvimento , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Pericárdio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(16): 4188-4193, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610343

RESUMO

In the zebrafish (Danio rerio), regeneration and fibrosis after cardiac injury are not mutually exclusive responses. Upon cardiac cryoinjury, collagen and other extracellular matrix (ECM) proteins accumulate at the injury site. However, in contrast to the situation in mammals, fibrosis is transient in zebrafish and its regression is concomitant with regrowth of the myocardial wall. Little is known about the cells producing this fibrotic tissue or how it resolves. Using novel genetic tools to mark periostin b- and collagen 1alpha2 (col1a2)-expressing cells in combination with transcriptome analysis, we explored the sources of activated fibroblasts and traced their fate. We describe that during fibrosis regression, fibroblasts are not fully eliminated but become inactivated. Unexpectedly, limiting the fibrotic response by genetic ablation of col1a2-expressing cells impaired cardiomyocyte proliferation. We conclude that ECM-producing cells are key players in the regenerative process and suggest that antifibrotic therapies might be less efficient than strategies targeting fibroblast inactivation.


Assuntos
Fibroblastos/fisiologia , Coração/fisiologia , Regeneração/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Moléculas de Adesão Celular/biossíntese , Linhagem da Célula , Temperatura Baixa/efeitos adversos , Colágeno Tipo XII/biossíntese , Colágeno Tipo XII/genética , Endocárdio/patologia , Matriz Extracelular/metabolismo , Fibrose , Regulação da Expressão Gênica , Genes Reporter , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Mensageiro/biossíntese , Transcriptoma , Peixe-Zebra , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
4.
STAR Protoc ; 3(3): 101555, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36072757

RESUMO

Single-cell nucleosome, methylome, and transcriptome (scNMT) sequencing is a recently developed method that allows multiomics profiling of single cells. In this scNMT protocol, we describe profiling of cells from mouse brain and pancreatic organoids, using liquid handling platforms to increase throughput from 96-well to 384-well plate format. Our approach miniaturizes reaction volumes and incorporates the latest Smart-seq3 protocol to obtain higher numbers of detected genes and genomic DNA (gDNA) CpGs per cell. We outline normalization steps to optimally distribute per-cell sequencing depth. For complete details on the use and execution of this protocol, please refer to Clark (2019), Clark et al. (2018), and Clark et al., 2018, Hagemann-Jensen et al., 2020a, Hagemann-Jensen et al., 2020b.


Assuntos
Epigenoma , Nucleossomos , Animais , Encéfalo , Camundongos , Organoides , Transcriptoma
5.
Methods Mol Biol ; 2158: 51-62, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32857365

RESUMO

Zebrafish have the capacity to regenerate most of its organs upon injury, including the heart. Due to its amenability for genetic manipulation, the zebrafish is an excellent model organism to study the cellular and molecular mechanisms promoting heart regeneration. Several cardiac injury models have been developed in zebrafish, including ventricular resection, genetic ablation, and ventricular cryoinjury. This chapter provides a detailed protocol of zebrafish ventricular cryoinjury and highlights factors and critical steps to be considered when performing this method.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Criocirurgia/efeitos adversos , Modelos Animais de Doenças , Traumatismos Cardíacos/patologia , Coração/fisiologia , Regeneração , Remodelação Ventricular , Animais , Proliferação de Células , Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/reabilitação , Peixe-Zebra
6.
Curr Opin Genet Dev ; 64: 37-43, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32599303

RESUMO

In humans, myocardial infarction results in ventricular remodeling, progressing ultimately to cardiac failure, one of the leading causes of death worldwide. In contrast to the adult mammalian heart, the zebrafish model organism has a remarkable regenerative capacity, offering the possibility to research the bases of natural regeneration. Here, we summarize recent insights into the cellular and molecular mechanisms that govern cardiac regeneration in the zebrafish.


Assuntos
Coração/fisiologia , Miócitos Cardíacos/citologia , Regeneração , Peixe-Zebra/fisiologia , Animais , Coração/embriologia , Peixe-Zebra/embriologia
7.
Cell Rep ; 28(5): 1296-1306.e6, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31365871

RESUMO

Organ regeneration is preceded by the recruitment of innate immune cells, which play an active role during repair and regrowth. Here, we studied macrophage subtypes during organ regeneration in the zebrafish, an animal model with a high regenerative capacity. We identified a macrophage subpopulation expressing Wilms tumor 1b (wt1b), which accumulates within regenerating tissues. This wt1b+ macrophage population exhibited an overall pro-regenerative gene expression profile and different migratory behavior compared to the remainder of the macrophages. Functional studies showed that wt1b regulates macrophage migration and retention at the injury area. Furthermore, wt1b-null mutant zebrafish presented signs of impaired macrophage differentiation, delayed fin growth upon caudal fin amputation, and reduced cardiomyocyte proliferation following cardiac injury that correlated with altered macrophage recruitment to the regenerating areas. We describe a pro-regenerative macrophage subtype in the zebrafish and a role for wt1b in organ regeneration.


Assuntos
Nadadeiras de Animais/fisiologia , Coração/fisiologia , Macrófagos/metabolismo , Regeneração , Proteínas WT1/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Macrófagos/citologia , Proteínas WT1/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Nat Commun ; 9(1): 428, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382818

RESUMO

During development, mesodermal progenitors from the first heart field (FHF) form a primitive cardiac tube, to which progenitors from the second heart field (SHF) are added. The contribution of FHF and SHF progenitors to the adult zebrafish heart has not been studied to date. Here we find, using genetic tbx5a lineage tracing tools, that the ventricular myocardium in the adult zebrafish is mainly derived from tbx5a+ cells, with a small contribution from tbx5a- SHF progenitors. Notably, ablation of ventricular tbx5a+-derived cardiomyocytes in the embryo is compensated by expansion of SHF-derived cells. In the adult, tbx5a expression is restricted to the trabeculae and excluded from the outer cortical layer. tbx5a-lineage tracing revealed that trabecular cardiomyocytes can switch their fate and differentiate into cortical myocardium during adult heart regeneration. We conclude that a high degree of cardiomyocyte cell fate plasticity contributes to efficient regeneration.


Assuntos
Ventrículos do Coração/citologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Regeneração/genética , Proteínas com Domínio T/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Linhagem da Célula/genética , Rastreamento de Células , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ventrículos do Coração/crescimento & desenvolvimento , Ventrículos do Coração/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Organogênese/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas com Domínio T/deficiência , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA