Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 63(11): 4015-32, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22563122

RESUMO

The molecular bases of the gametophytic self-incompatibility (GSI) system of species of the subtribe Pyrinae (Rosaceae), such as apple and pear, have been widely studied in the last two decades. The characterization of S-locus genes and of the mechanisms underlying pollen acceptance or rejection have been topics of major interest. Besides the single pistil-side S determinant, the S-RNase, multiple related S-locus F-box genes seem to be involved in the determination of pollen S specificity. Here, we collect and review the state of the art of GSI in the Pyrinae. We emphasize recent genomic data that have contributed to unveiling the S-locus structure of the Pyrinae, and discuss their consistency with the models of self-recognition that have been proposed for Prunus and the Solanaceae. Experimental data suggest that the mechanism controlling pollen-pistil recognition specificity of the Pyrinae might fit well with the collaborative 'non-self' recognition system proposed for Petunia (Solanaceae), whereas it presents relevant differences with the mechanism exhibited by the species of the closely related genus Prunus, which uses a single evolutionarily divergent F-box gene as the pollen S determinant. The possible involvement of multiple pollen S genes in the GSI system of Pyrinae, still awaiting experimental confirmation, opens up new perspectives to our understanding of the evolution of S haplotypes, and of the evolution of S-RNase-based GSI within the Rosaceae family. Whereas S-locus genes encode the players determining self-recognition, pollen rejection in the Pyrinae seems to involve a complex cascade of downstream cellular events with significant similarities to programmed cell death.


Assuntos
Evolução Biológica , Pólen/genética , Rosaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Rosaceae/metabolismo
2.
BMC Plant Biol ; 10: 87, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20470375

RESUMO

BACKGROUND: Gene duplication is central to genome evolution. In plants, genes can be duplicated through small-scale events and large-scale duplications often involving polyploidy. The apple belongs to the subtribe Pyrinae (Rosaceae), a diverse lineage that originated via allopolyploidization. Both small-scale duplications and polyploidy may have been important mechanisms shaping the genome of this species. RESULTS: This study evaluates the gene duplication and polyploidy history of the apple by characterizing duplicated genes in this species using EST data. Overall, 68% of the apple genes were clustered into families with a mean copy-number of 4.6. Analysis of the age distribution of gene duplications supported a continuous mode of small-scale duplications, plus two episodes of large-scale duplicates of vastly different ages. The youngest was consistent with the polyploid origin of the Pyrinae 37-48 MYBP, whereas the older may be related to gamma-triplication; an ancient hexapolyploidization previously characterized in the four sequenced eurosid genomes and basal to the eurosid-asterid divergence. Duplicated genes were studied for functional diversification with an emphasis on young paralogs; those originated during or after the formation of the Pyrinae lineage. Unequal assignment of single-copy genes and gene families to Gene Ontology categories suggested functional bias in the pattern of gene retention of paralogs. Young paralogs related to signal transduction, metabolism, and energy pathways have been preferentially retained. Non-random retention of duplicated genes seems to have mediated the expansion of gene families, some of which may have substantially increased their members after the origin of the Pyrinae. The joint analysis of over-duplicated functional categories and phylogenies, allowed evaluation of the role of both polyploidy and small-scale duplications during this process. Finally, gene expression analysis indicated that 82% of duplicated genes, including 80% of young paralogs, showed uncorrelated expression profiles, suggesting extensive subfunctionalization and a role of gene duplication in the acquisition of novel patterns of gene expression. CONCLUSIONS: This study reports a genome-wide analysis of the mode of gene duplication in the apple, and provides evidence for its role in genome functional diversification by characterising three major processes: selective retention of paralogs, amplification of gene families, and changes in gene expression.


Assuntos
Evolução Molecular , Etiquetas de Sequências Expressas , Duplicação Gênica , Malus/genética , Genes Duplicados , Genes de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Poliploidia
3.
Plant Cell Rep ; 28(3): 457-67, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19096853

RESUMO

European pear exhibits RNase-based gametophytic self-incompatibility controlled by the polymorphic S-locus. S-allele diversity of cultivars has been extensively investigated; however, no mutant alleles conferring self-compatibility have been reported. In this study, two European pear cultivars, 'Abugo' and 'Ceremeño', were classified as self-compatible after fruit/seed setting and pollen tube growth examination. S-genotyping through S-PCR and sequencing identified a new S-RNase allele in the two cultivars, with identical deduced amino acid sequence as S(21), but differing at the nucleotide level. Test-pollinations and analysis of descendants suggested that the new allele is a self-compatible pistil-mutated variant of S(21), so it was named S(21)*. S-genotypes assigned to 'Abugo' and 'Ceremeño' were S(10)S(21)* and S(21)*S(25) respectively, of which S(25) is a new functional S-allele of European pear. Reciprocal crosses between cultivars bearing S(21) and S(21)* indicated that both alleles exhibit the same pollen function; however, cultivars bearing S(21)* had impaired pistil-S function as they failed to reject either S(21) or S (21)* pollen. RT-PCR analysis showed absence of S(21)* -RNase gene expression in styles of 'Abugo' and 'Ceremeño', suggesting a possible origin for S(21)* pistil dysfunction. Two polymorphisms found within the S-RNase genomic region (a retrotransposon insertion within the intron of S(21)* and indels at the 3'UTR) might explain the different pattern of expression between S(21) and S(21)*. Evaluation of cultivars with unknown S-genotype identified another cultivar 'Azucar Verde' bearing S(21)*, and pollen tube growth examination confirmed self-compatibility for this cultivar as well. This is the first report of a mutated S-allele conferring self-compatibility in European pear.


Assuntos
Cruzamentos Genéticos , Flores/fisiologia , Genes de Plantas , Pyrus/genética , Ribonucleases/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , DNA de Plantas/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Dados de Sequência Molecular , Mutação , Pólen/genética , Pólen/fisiologia , Polimorfismo Genético , Pyrus/fisiologia , Alinhamento de Sequência , Análise de Sequência de DNA
4.
Am J Bot ; 90(1): 78-84, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21659082

RESUMO

While stigma anatomy is well documented for a good number of species, little information is available on the acquisition and cessation of stigmatic receptivity. The aim of this work is to characterize the development of stigma receptivity, from anthesis to stigma degeneration, in the pentacarpellar pear (Pyrus communis) flower. Stigma development and stigmatic receptivity were monitored over two consecutive years, as the capacity of the stigmas to offer support for pollen germination and pollen tube growth. In an experiment where hand pollinations were delayed for specified times after anthesis, three different stigmatic developmental stages could be observed: (1) immature stigmas, which allow pollen adhesion but not hydration; (2) receptive stigmas, which allow proper pollen hydration and germination; and (3) degenerated stigmas, in which pollen hydrates and germinates properly, but pollen tube growth is impaired soon after germination. This developmental characterization showed that stigmas in different developmental stages coexist within a flower and that the acquisition and cessation of stigmatic receptivity by each carpel occur in a sequential manner. In this way, while the duration of stigmatic receptivity for each carpel is rather short, the flower has an expanded receptive period. This asynchronous period of receptivity for the different stigmas of a single flower is discussed as a strategy that could serve to maximize pollination resources under unreliable pollination conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA