RESUMO
The dynamics underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection remain poorly understood. We identified a small cluster of patients in Brazil who experienced 2 episodes of coronavirus disease (COVID-19) in March and late May 2020. In the first episode, patients manifested an enhanced innate response compared with healthy persons, but neutralizing humoral immunity was not fully achieved. The second episode was associated with different SARS-CoV-2 strains, higher viral loads, and clinical symptoms. Our finding that persons with mild COVID-19 may have controlled SARS-CoV-2 replication without developing detectable humoral immunity suggests that reinfection is more frequent than supposed, but this hypothesis is not well documented.
Assuntos
COVID-19 , SARS-CoV-2 , Brasil/epidemiologia , Humanos , Imunidade Humoral , ReinfecçãoRESUMO
BACKGROUND: Current approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity. METHODS: SARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19. RESULTS: Daclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 µM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans. CONCLUSIONS: Daclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy.
Assuntos
COVID-19 , Preparações Farmacêuticas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Carbamatos , Chlorocebus aethiops , Humanos , Imidazóis , Pirrolidinas , RNA Viral , SARS-CoV-2 , Sofosbuvir/farmacologia , Valina/análogos & derivados , Células VeroRESUMO
Leishmania amazonensis lacks a de novo mechanism for cholesterol synthesis and therefore must scavenge this lipid from the host environment. In this study we show that the L. amazonensis takes up and metabolizes human LDL(1) particles in both a time and dose-dependent manner. This mechanism implies the presence of a true LDL receptor because the uptake is blocked by both low temperature and by the excess of non-labelled LDL. This receptor is probably associated with specific microdomains in the membrane of the parasite, such as rafts, because this process is blocked by methyl-ß-cyclodextrin (MCBD). Cholesteryl ester fluorescently-labeled LDL (BODIPY-cholesteryl-LDL) was used to follow the intracellular distribution of this lipid. After uptake it was localized in large compartments along the parasite body. The accumulation of LDL was analyzed by flow cytometry using FITC-labeled LDL particles. Together these data show for the first time that L. amazonensis is able to compensate for its lack of lipid synthesis through the use of a lipid importing machinery largely based on the uptake of LDL particles from the host. Understanding the details of the molecular events involved in this mechanism may lead to the identification of novel targets to block Leishmania infection in human hosts.
Assuntos
Endocitose/fisiologia , Leishmania mexicana/metabolismo , Lipoproteínas LDL/metabolismo , Microdomínios da Membrana/metabolismo , Receptores de LDL/metabolismo , Animais , Bovinos , Ésteres do Colesterol/metabolismo , Esterificação , Citometria de Fluxo , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Humanos , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/crescimento & desenvolvimento , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/sangue , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , beta-Ciclodextrinas/farmacologiaRESUMO
Insect eggs must contain the necessary nutrients for embryonic growth. In this article, we investigated the accumulation of triacylglycerol (TAG) in growing oocytes and its utilization during embryonic development. TAG makes up about 60% of the neutral lipids in oocytes and accumulates as oocytes grow, from 2.2 ± 0.1 µg in follicles containing 1.0 mm length oocytes to 10.2 ± 0.8 µg in 2.0 mm length oocytes. Lipophorin (Lp), the hemolymphatic lipoprotein, radioactively labeled in free fatty acid (FFA) or diacylglycerol (DAG), was used to follow the transport of these lipids to the ovary. Radioactivity from both lipid classes accumulated in the oocytes, which was abolished at 4°C. The capacity of the ovary to receive FFA or DAG from Lp varied according to time after a blood meal and reached a maximum around the second day. (3) H-DAG supplied by Lp to the ovaries was used in the synthesis of TAG as, 48 hr after injection, most of the radioactivity was found in TAG (85.7% of labeling in neutral lipids). During embryogenesis, lipid stores were mobilized, and the TAG content decreased from 16.4 ± 2.1 µg/egg on the first day to 10.0 ± 1.3 µg on day 15, just before hatching. Of these, 7.4 ± 0.9 µg were found in the newly emerged nymphs. In unfertilized eggs, the TAG content did not change. Although the TAG content decreased during embryogenesis, the relative lipid composition of the egg did not change. The amount of TAG in the nymph slowly decreased during the days after hatching.
Assuntos
Oócitos/metabolismo , Óvulo/metabolismo , Rhodnius/metabolismo , Triglicerídeos/metabolismo , Animais , Transporte Biológico , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Feminino , Metabolismo dos Lipídeos , Ninfa/metabolismo , Ovário/metabolismo , Rhodnius/embriologiaRESUMO
In insects, lipids are stored in the fat body mainly as triacylglycerol. Lipids can be directly provided by digestion and incorporated from the hemolymph, or synthesized de novo from other substrates such as carbohydrates and amino acids. The first step in de novo lipid synthesis is catalyzed by acetyl-CoA carboxylase (ACC), which carboxylates acetyl-CoA to form malonyl-CoA. Rhodnius prolixus is a hematophagous insect vector of Chagas disease and feeds exclusively on large and infrequent blood meals. Adult females slowly digest the blood and concomitantly accumulate lipids in the fat body. In this study, we investigated the regulation of R. prolixus ACC (RhoprACC) expression and de novo lipogenesis activity in adult females at different nutritional and metabolic conditions. A phylogenetic analysis showed that insects, similar to other arthropods and unlike vertebrate animals, have only one ACC gene. In females on the fourth day after a blood meal, RhoprACC transcript levels were similar in the anterior and posterior midgut, fat body and ovary and higher in the flight muscles. In the fat body, gene expression was higher in fasted females and decreased after a blood meal. In the posterior midgut it increased after feeding, and no variation was observed in the flight muscle. RhoprACC protein content analysis of the fat body revealed a profile similar to the gene expression, with higher protein contents before feeding and in the first two days after a blood meal. Radiolabeled acetate was used to follow de novo lipid synthesis in the fat body and it was incorporated mainly into triacylglycerol, diacylglycerol and phospholipids. This lipogenic activity was inhibited by soraphen A, an ACC inhibitor, and it varied according to the insect metabolic status. De novo lipogenesis was very low in starved females and increased during the initial days after a blood meal. The flight muscles had a very low capacity to synthesize lipids when compared to the fat body. Radiolabeled leucine was also used as a substrate for de novo lipogenesis and the same lipid classes were formed. In conclusion, our results indicate that the blood meal induces the utilization of diet-derived amino acids by de novo lipogenesis in the fat body, and that the control of this activity does not occur at the RhoprACC gene or protein expression level.