RESUMO
Kabuki syndrome (KS, KS1: OMIM 147920 and KS2: OMIM 300867) is caused by pathogenic variations in KMT2D or KDM6A. KS is characterized by multiple congenital anomalies and neurodevelopmental disorders. Growth restriction is frequently reported. Here we aimed to create specific growth charts for individuals with KS1, identify parameters used for size prognosis and investigate the impact of growth hormone therapy on adult height. Growth parameters and parental size were obtained for 95 KS1 individuals (41 females). Growth charts for height, weight, body mass index (BMI) and occipitofrontal circumference were generated in standard deviation values for the first time in KS1. Statural growth of KS1 individuals was compared to parental target size. According to the charts, height, weight, BMI, and occipitofrontal circumference were lower for KS1 individuals than the normative French population. For males and females, the mean growth of KS1 individuals was -2 and -1.8 SD of their parental target size, respectively. Growth hormone therapy did not increase size beyond the predicted size. This study, from the largest cohort available, proposes growth charts for widespread use in the management of KS1, especially for size prognosis and screening of other diseases responsible for growth impairment beyond a calculated specific target size.
Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Doenças Hematológicas/genética , Doenças Hematológicas/fisiopatologia , Proteínas de Neoplasias/genética , Doenças Vestibulares/genética , Doenças Vestibulares/fisiopatologia , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/fisiopatologia , Adolescente , Estatura , Índice de Massa Corporal , Peso Corporal , Criança , Pré-Escolar , Face/fisiopatologia , Feminino , Gráficos de Crescimento , Doenças Hematológicas/diagnóstico , Histona Desmetilases/genética , Humanos , Masculino , Mutação/genética , Doenças Vestibulares/diagnósticoRESUMO
PURPOSE: To investigate the genetic basis of congenital ataxias (CAs), a unique group of cerebellar ataxias with a nonprogressive course, in 20 patients from consanguineous families, and to identify new CA genes. METHODS: Singleton -exome sequencing on these 20 well-clinically characterized CA patients. We first checked for rare homozygous pathogenic variants, then, for variants from a list of genes known to be associated with CA or very early-onset ataxia, regardless of their mode of inheritance. Our replication cohort of 180 CA patients was used to validate the new CA genes. RESULTS: We identified a causal gene in 16/20 families: six known CA genes (7 patients); four genes previously implicated in another neurological phenotype (7 patients); two new candidate genes (2 patients). Despite the consanguinity, 4/20 patients harbored a heterozygous de novo pathogenic variant. CONCLUSION: Singleton exome sequencing in 20 consanguineous CA families led to molecular diagnosis in 80% of cases. This study confirms the genetic heterogeneity of CA and identifies two new candidate genes (PIGS and SKOR2). Our work illustrates the diversity of the pathophysiological pathways in CA, and highlights the pathogenic link between some CA and early infantile epileptic encephalopathies related to the same genes (STXBP1, BRAT1, CACNA1A and CACNA2D2).
Assuntos
Ataxia/genética , Ataxia Cerebelar/genética , Espasmos Infantis/genética , Adolescente , Ataxia/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Exoma/genética , Feminino , França , Heterogeneidade Genética , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Mutação/genética , Fenótipo , Sequenciamento do Exoma/métodos , Adulto JovemRESUMO
In this study, we describe the biological immune profiles and clinical dysimmune manifestations (infections, autoimmune diseases, and allergies) of patients with 22q11.2 deletion syndrome with the aim of determining risk factors for clinical events. This retrospective study concerned all the patients with 22q11 deletion syndrome attending the Montpellier University Hospital from January 1, 1992, to December 31, 2014 who had at least one immune investigation before the age of 18. We analyzed the clinical features, biological tests and the course of infections, autoimmunity, and allergy of 86 children. Among these 86 children, 48 (59%) had a low T lymphocyte level. Twenty-nine patients (34%) had a severe infection. The only risk factor for severe infection was the low level of CD4+ T-cells (OR: 3.3; 95% confidence interval (CI) [1.020-11.108]). Eleven patients (13%) developed an autoimmune disease; the only risk factor was an antecedent of severe infection (OR: 4.1; 95% CI [1.099-15.573]). Twenty-three patients (27%) had allergic episodes. A low level of CD8+ T-cells (OR: 3.2; 95% CI [1.07-9.409]) was significantly associated with allergy manifestations. Patients with 22q11 deletion syndrome have a high rate of dysimmune manifestations. We found statistic correlations among CD4+ T-cell count, infectious manifestations, and autoimmunity.
Assuntos
Autoimunidade , Síndrome de DiGeorge/epidemiologia , Suscetibilidade a Doenças , Fenótipo , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Criança , Pré-Escolar , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/imunologia , Suscetibilidade a Doenças/imunologia , Feminino , França/epidemiologia , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Isotipos de Imunoglobulinas/sangue , Isotipos de Imunoglobulinas/imunologia , Lactente , Infecções/etiologia , Masculino , Prevalência , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
BACKGROUND: The 11p15 region contains two clusters of imprinted genes. Opposite genetic and epigenetic anomalies of this region result in two distinct growth disturbance syndromes: Beckwith-Wiedemann (BWS) and Silver-Russell syndromes (SRS). Cytogenetic rearrangements within this region represent less than 3% of SRS and BWS cases. Among these, 11p15 duplications were infrequently reported and interpretation of their pathogenic effects is complex. OBJECTIVES: To report cytogenetic and methylation analyses in a cohort of patients with SRS/BWS carrying 11p15 duplications and establish genotype/phenotype correlations. METHODS: From a cohort of patients with SRS/BWS with an abnormal methylation profile (using ASMM-RTQ-PCR), we used SNP-arrays to identify and map the 11p15 duplications. We report 19 new patients with SRS (n=9) and BWS (n=10) carrying de novo or familial 11p15 duplications, which completely or partially span either both telomeric and centromeric domains or only one domain. RESULTS: Large duplications involving one complete domain or both domains are associated with either SRS or BWS, depending on the parental origin of the duplication. Genotype-phenotype correlation studies of partial duplications within the telomeric domain demonstrate the prominent role of IGF2, rather than H19, in the control of growth. Furthermore, it highlights the role of CDKN1C within the centromeric domain and suggests that the expected overexpression of KCNQ1OT1 from the paternal allele (in partial paternal duplications, excluding CDKN1C) does not affect the expression of CDKN1C. CONCLUSIONS: The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.
Assuntos
Síndrome de Beckwith-Wiedemann/genética , Duplicação Gênica/genética , Impressão Molecular , Síndrome de Silver-Russell/genética , Adulto , Síndrome de Beckwith-Wiedemann/patologia , Centrômero/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 11/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Análise Citogenética , Feminino , Humanos , Fator de Crescimento Insulin-Like II/genética , Masculino , Mutação , Fenótipo , Síndrome de Silver-Russell/patologia , Telômero/genéticaRESUMO
Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall-Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.
Assuntos
Anormalidades Múltiplas/genética , Hipotireoidismo Congênito/genética , Anormalidades Craniofaciais/genética , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Fatores de Transcrição NFI/genética , Síndrome de Sotos/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/fisiopatologia , Criança , Pré-Escolar , Deleção Cromossômica , Hipotireoidismo Congênito/fisiopatologia , Anormalidades Craniofaciais/fisiopatologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Éxons/genética , Feminino , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Megalencefalia/genética , Megalencefalia/fisiopatologia , Mutação de Sentido Incorreto/genética , Fenótipo , Displasia Septo-Óptica/genética , Displasia Septo-Óptica/fisiopatologia , Síndrome de Sotos/fisiopatologia , Adulto JovemRESUMO
Autosomal dominant cerebellar ataxias have a marked heterogeneous genetic background, with mutations in 34 genes identified so far. This large amount of implicated genes accounts for heterogeneous clinical presentations, making genotype-phenotype correlations a major challenge in the field. While polyglutamine ataxias, linked to CAG repeat expansions in genes such as ATXN1, ATXN2, ATXN3, ATXN7, CACNA1A and TBP, have been extensively characterized in large cohorts, there is a need for comprehensive assessment of frequency and phenotype of more 'conventional' ataxias. After exclusion of CAG/polyglutamine expansions in spinocerebellar ataxia genes in 412 index cases with dominantly inherited cerebellar ataxias, we aimed to establish the relative frequencies of mutations in other genes, with an approach combining panel sequencing and TaqMan® polymerase chain reaction assay. We found relevant genetic variants in 59 patients (14.3%). The most frequently mutated were channel genes [CACNA1A (n = 16), KCND3 (n = 4), KCNC3 (n = 2) and KCNA1 (n = 2)]. Deletions in ITPR1 (n = 11) were followed by biallelic variants in SPG7 (n = 9). Variants in AFG3L2 (n = 7) came next in frequency, and variants were rarely found in STBN2 (n = 2), ELOVL5, FGF14, STUB1 and TTBK2 (n = 1 each). Interestingly, possible risk factor variants were detected in SPG7 and POLG. Clinical comparisons showed that ataxias due to channelopathies had a significantly earlier age at onset with an average of 24.6 years, versus 40.9 years for polyglutamine expansion spinocerebellar ataxias and 37.8 years for SPG7-related forms (P = 0.001). In contrast, disease duration was significantly longer in the former (20.5 years versus 9.3 and 13.7, P=0.001), though for similar functional stages, indicating slower progression of the disease. Of interest, intellectual deficiency was more frequent in channel spinocerebellar ataxias, while cognitive impairment in adulthood was similar among the three groups. Similar differences were found among a single gene group, comparing 23 patients with CACNA1A expansions (spinocerebellar ataxia 6) to 22 patients with CACNA1A point mutations, which had lower average age at onset (25.2 versus 47.3 years) with longer disease duration (18.7 versus 10.9), but lower severity indexes (0.39 versus 0.44), indicating slower progression of the disease. In conclusion, we identified relevant genetic variations in up to 15% of cases after exclusion of polyglutamine expansion spinocerebellar ataxias, and confirmed CACNA1A and SPG7 as major ataxia genes. We could delineate firm genotype-phenotype correlations that are important for genetic counselling and of possible prognostic value.
Assuntos
Canais de Cálcio/genética , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Canalopatias/genética , Canalopatias/fisiopatologia , Metaloendopeptidases/genética , ATPases Associadas a Diversas Atividades Celulares , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genes Dominantes , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto JovemRESUMO
CHARGE syndrome (CS) is a genetic disorder whose first description included Coloboma, Heart disease, Atresia of choanae, Retarded growth and development, Genital hypoplasia, and Ear anomalies and deafness, most often caused by a genetic mutation in the CHD7 gene. Two features were then added: semicircular canal anomalies and arhinencephaly/olfactory bulb agenesis, with classification of typical, partial, or atypical forms on the basis of major and minor clinical criteria. The detection rate of a pathogenic variant in the CHD7 gene varies from 67% to 90%. To try to have an overview of this heterogenous clinical condition and specify a genotype-phenotype relation, we conducted a national study of phenotype and genotype in 119 patients with CS. Selected clinical diagnostic criteria were from Verloes (2005), updated by Blake & Prasad (). Besides obtaining a detailed clinical description, when possible, patients underwent a full ophthalmologic examination, audiometry, temporal bone CT scan, gonadotropin analysis, and olfactory-bulb MRI. All patients underwent CHD7 sequencing and MLPA analysis. We found a pathogenic CHD7 variant in 83% of typical CS cases and 58% of atypical cases. Pathogenic variants in the CHD7 gene were classified by the expected impact on the protein. In all, 90% of patients had a typical form of CS and 10% an atypical form. The most frequent features were deafness/semicircular canal hypoplasia (94%), pituitary defect/hypogonadism (89%), external ear anomalies (87%), square-shaped face (81%), and arhinencephaly/anosmia (80%). Coloboma (73%), heart defects (65%), and choanal atresia (43%) were less frequent.
Assuntos
Síndrome CHARGE/diagnóstico , Síndrome CHARGE/genética , Estudos de Associação Genética , Genótipo , Fenótipo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Sistema Nervoso Central/anormalidades , Criança , Pré-Escolar , Estudos de Coortes , Nervos Cranianos/anormalidades , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Feminino , França , Testes Genéticos , Humanos , Lactente , Masculino , Técnicas de Diagnóstico Molecular , Adulto JovemRESUMO
Holoprosencephaly (HPE) is the most common congenital cerebral malformation in humans, characterized by impaired forebrain cleavage and midline facial anomalies. It presents a high heterogeneity, both in clinics and genetics. We have developed a novel targeted next-generation sequencing (NGS) assay and screened a cohort of 257 HPE patients. Mutations with high confidence in their deleterious effect were identified in approximately 24% of the cases and were held for diagnosis, whereas variants of uncertain significance were identified in 10% of cases. This study provides a new classification of genes that are involved in HPE. SHH, ZIC2, and SIX3 remain the top genes in term of frequency with GLI2, and are followed by FGF8 and FGFR1. The three minor HPE genes identified by our study are DLL1, DISP1, and SUFU. Here, we demonstrate that fibroblast growth factor signaling must now be considered a major pathway involved in HPE. Interestingly, several cases of double mutations were found and argue for a polygenic inheritance of HPE. Altogether, it supports that the implementation of NGS in HPE diagnosis is required to improve genetic counseling.
Assuntos
Fatores de Crescimento de Fibroblastos/genética , Holoprosencefalia/genética , Mutação , Feminino , Predisposição Genética para Doença , Proteínas Hedgehog/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Análise de Sequência de DNA/métodos , Transdução de SinaisRESUMO
BAP31 is one of the most abundant endoplasmic reticulum (ER) membrane proteins. It is a chaperone protein involved in several pathways, including ER-associated degradation, export of ER proteins to the Golgi apparatus, and programmed cell death. BAP31 is encoded by BCAP31, located in human Xq28 and highly expressed in neurons. We identified loss-of-function mutations in BCAP31 in seven individuals from three families. These persons suffered from motor and intellectual disabilities, dystonia, sensorineural deafness, and white-matter changes, which together define an X-linked syndrome. In the primary fibroblasts of affected individuals, we found that BCAP31 deficiency altered ER morphology and caused a disorganization of the Golgi apparatus in a significant proportion of cells. Contrary to what has been described with transient-RNA-interference experiments, we demonstrate that constitutive BCAP31 deficiency does not activate the unfolded protein response or cell-death effectors. Rather, our data demonstrate that the lack of BAP31 disturbs ER metabolism and impacts the Golgi apparatus, highlighting an important role for BAP31 in ER-to-Golgi crosstalk. These findings provide a molecular basis for a Mendelian syndrome and link intracellular protein trafficking to severe congenital brain dysfunction and deafness.
Assuntos
Surdez/genética , Distonia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Complexo de Golgi/patologia , Proteínas de Membrana/genética , Mutação/genética , Bainha de Mielina/patologia , Forma Celular , Criança , Pré-Escolar , Surdez/complicações , Distonia/complicações , Feminino , Fibroblastos/patologia , Fibroblastos/ultraestrutura , Predisposição Genética para Doença , Complexo de Golgi/ultraestrutura , Humanos , Lactente , Masculino , Bainha de Mielina/ultraestrutura , Linhagem , Fenótipo , Adulto JovemRESUMO
In guanosine diphosphate (GDP)-mannose pyrophosphorylase A (GMPPA), we identified a homozygous nonsense mutation that segregated with achalasia and alacrima, delayed developmental milestones, and gait abnormalities in a consanguineous Pakistani pedigree. Mutations in GMPPA were subsequently found in ten additional individuals from eight independent families affected by the combination of achalasia, alacrima, and neurological deficits. This autosomal-recessive disorder shows many similarities with triple A syndrome, which is characterized by achalasia, alacrima, and variable neurological deficits in combination with adrenal insufficiency. GMPPA is a largely uncharacterized homolog of GMPPB. GMPPB catalyzes the formation of GDP-mannose, which is an essential precursor of glycan moieties of glycoproteins and glycolipids and is associated with congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-dystroglycan. Surprisingly, GDP-mannose pyrophosphorylase activity was unchanged and GDP-mannose levels were strongly increased in lymphoblasts of individuals with GMPPA mutations. This suggests that GMPPA might serve as a GMPPB regulatory subunit mediating feedback inhibition of GMPPB instead of displaying catalytic enzyme activity itself. Thus, a triple-A-like syndrome can be added to the growing list of congenital disorders of glycosylation, in which dysregulation rather than mere enzyme deficiency is the basal pathophysiological mechanism.
Assuntos
Códon sem Sentido , Genes Recessivos/genética , Guanosina Difosfato Manose/genética , Deficiência Intelectual/genética , Nucleotidiltransferases/genética , Adolescente , Insuficiência Adrenal/genética , Adulto , Criança , Consanguinidade , Acalasia Esofágica/genética , Oftalmopatias Hereditárias/genética , Glicosilação , Guanosina Difosfato Manose/metabolismo , Homozigoto , Humanos , Deficiência Intelectual/enzimologia , Doenças do Aparelho Lacrimal/genética , Doenças do Sistema Nervoso/genética , Nucleotidiltransferases/metabolismo , Linhagem , Adulto JovemRESUMO
Otopalatodigital spectrum disorders (OPDSD) constitute a group of dominant X-linked osteochondrodysplasias including four syndromes: otopalatodigital syndromes type 1 and type 2 (OPD1 and OPD2), frontometaphyseal dysplasia, and Melnick-Needles syndrome. These syndromes variably associate specific facial and extremities features, hearing loss, cleft palate, skeletal dysplasia and several malformations, and show important clinical overlap over the different entities. FLNA gain-of-function mutations were identified in these conditions. FLNA encodes filamin A, a scaffolding actin-binding protein. Here, we report phenotypic descriptions and molecular results of FLNA analysis in a large series of 27 probands hypothesized to be affected by OPDSD. We identified 11 different missense mutations in 15 unrelated probands (n=15/27, 56%), of which seven were novel, including one of unknown significance. Segregation analyses within families made possible investigating 20 additional relatives carrying a mutation. This series allows refining the phenotypic and mutational spectrum of FLNA mutations causing OPDSD, and providing suggestions to avoid the overdiagnosis of OPD1.
Assuntos
Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Estudos de Associação Genética , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Mutação , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Fenótipo , Alelos , Substituição de Aminoácidos , Éxons , Fácies , Feminino , Filaminas/genética , Humanos , Masculino , Linhagem , Análise de Sequência de DNARESUMO
BACKGROUND: Intellectual disability (ID) is characterised by an extreme genetic heterogeneity. Several hundred genes have been associated to monogenic forms of ID, considerably complicating molecular diagnostics. Trio-exome sequencing was recently proposed as a diagnostic approach, yet remains costly for a general implementation. METHODS: We report the alternative strategy of targeted high-throughput sequencing of 217 genes in which mutations had been reported in patients with ID or autism as the major clinical concern. We analysed 106 patients with ID of unknown aetiology following array-CGH analysis and other genetic investigations. Ninety per cent of these patients were males, and 75% sporadic cases. RESULTS: We identified 26 causative mutations: 16 in X-linked genes (ATRX, CUL4B, DMD, FMR1, HCFC1, IL1RAPL1, IQSEC2, KDM5C, MAOA, MECP2, SLC9A6, SLC16A2, PHF8) and 10 de novo in autosomal-dominant genes (DYRK1A, GRIN1, MED13L, TCF4, RAI1, SHANK3, SLC2A1, SYNGAP1). We also detected four possibly causative mutations (eg, in NLGN3) requiring further investigations. We present detailed reasoning for assigning causality for each mutation, and associated patients' clinical information. Some genes were hit more than once in our cohort, suggesting they correspond to more frequent ID-associated conditions (KDM5C, MECP2, DYRK1A, TCF4). We highlight some unexpected genotype to phenotype correlations, with causative mutations being identified in genes associated to defined syndromes in patients deviating from the classic phenotype (DMD, TCF4, MECP2). We also bring additional supportive (HCFC1, MED13L) or unsupportive (SHROOM4, SRPX2) evidences for the implication of previous candidate genes or mutations in cognitive disorders. CONCLUSIONS: With a diagnostic yield of 25% targeted sequencing appears relevant as a first intention test for the diagnosis of ID, but importantly will also contribute to a better understanding regarding the specific contribution of the many genes implicated in ID and autism.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Técnicas de Diagnóstico Molecular/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Análise de Sequência de DNA/métodos , Adulto JovemRESUMO
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous ciliopathy. Although nine BBS genes have been cloned, they explain only 40-50% of the total mutational load. Here we report a major new BBS locus, BBS10, that encodes a previously unknown, rapidly evolving vertebrate-specific chaperonin-like protein. We found BBS10 to be mutated in about 20% of an unselected cohort of families of various ethnic origins, including some families with mutations in other BBS genes, consistent with oligogenic inheritance. In zebrafish, mild suppression of bbs10 exacerbated the phenotypes of other bbs morphants.
Assuntos
Síndrome de Bardet-Biedl/genética , Proteínas/genética , Estudos de Coortes , Humanos , Mutação , Proteínas/metabolismoRESUMO
MED13L is a component subunit of the Mediator complex, an important regulator of transcription that is highly conserved across eukaryotes. Here, we report MED13L disruption in a translocation t(12;19) breakpoint of a patient with Pierre-Robin syndrome, moderate intellectual disability, craniofacial anomalies, and muscular defects. The phenotype is similar to previously described patients with MED13L haploinsufficiency. Knockdown of MED13L orthologue in zebrafish, med13b, showed early defective migration of cranial neural crest cells (NCCs) that contributed to cartilage structure deformities in the later stage, recapitulating craniofacial anomalies seen in human patients. Notably, we observed abnormal distribution of developing neurons in different brain regions of med13b morphant embryos, which could be rescued upon introduction of full-length human MED13L mRNA. To compare with mammalian system, we suppressed MED13L expression by short-hairpin RNA in ES-derived human neural progenitors, and differentiated them into neurons. Transcriptome analysis revealed differential expression of components of Wnt and FGF signaling pathways in MED13L-deficient neurons. Our finding provides a novel insight into the mechanism of overlapping phenotypic outcome targeting NCCs derivatives organs in patients with MED13L haploinsufficiency, and emphasizes a clinically recognizable syndromic phenotype in these patients.
Assuntos
Haploinsuficiência , Deficiência Intelectual/genética , Complexo Mediador/genética , Crista Neural/metabolismo , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Pré-Escolar , Pontos de Quebra do Cromossomo , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Humanos , Deficiência Intelectual/diagnóstico , Complexo Mediador/metabolismo , Crista Neural/embriologia , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , RNA Mensageiro/genética , Análise de Sequência de DNA , Transcriptoma , Translocação Genética , Peixe-ZebraRESUMO
Mosaic variegated aneuploidy (MVA) is a rare autosomal recessive disorder characterized by constitutional aneuploidies. Mutations in BUB1B and CEP57 genes, which are involved in mitotic spindle and microtubule stabilization, respectively, are responsible for a subset of patients with MVA. To date, CEP57 mutations have been reported only in four probands. We report on a girl with this disorder due to c.915-925dup11 mutation in CEP57, which predicts p.Leu309ProfsX9 and review the literature in order to facilitate genotype-phenotype correlation. Rhizomelic shortening of the upper limbs, skull anomalies with conserved head circumference, and absence of tumor development could be features suggesting a need for molecular screening of the CEP57 gene in patients with this disorder.
Assuntos
Transtornos Cromossômicos/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação , Proteínas Nucleares/genética , Aneuploidia , Pré-Escolar , Transtornos Cromossômicos/diagnóstico , Consanguinidade , Análise Mutacional de DNA , Fácies , Feminino , Humanos , Mosaicismo , Linhagem , FenótipoRESUMO
Over one hundred VPS13B mutations are reported in Cohen syndrome (CS). Most cases exhibit a homogeneous phenotype that includes intellectual deficiency (ID), microcephaly, facial dysmorphism, slender extremities, truncal obesity, progressive chorioretinal dystrophy, and neutropenia. We report on a patient carrying two VPS13B splicing mutations with an atypical phenotype that included microcephaly, retinopathy, and congenital neutropenia, but neither obesity nor ID. RNA analysis of the IVS34+2T_+3AinsT mutation did not reveal any abnormal splice fragments but mRNA quantification showed a significant decrease in VPS13B expression. RNA sequencing analysis up- and downstream from the IVS57+2T>C mutation showed abnormal splice isoforms. In contrast to patients with typical CS, who express only abnormal VPS13B mRNA and truncated protein, a dose effect of residual normal VPS13B protein possibly explains the incomplete phenotype in the patient. This observation emphasizes that VPS13B analysis should be performed in cases of congenital neutropenia associated with retinopathy, even in the absence of ID, therefore extending the VPS13B phenotype spectrum.
Assuntos
Deficiência Intelectual/genética , Mutação , Neutropenia/congênito , Obesidade/genética , Fenótipo , Doenças Retinianas/genética , Proteínas de Transporte Vesicular/genética , Adulto , Síndrome Congênita de Insuficiência da Medula Óssea , Análise Mutacional de DNA , Fácies , Feminino , Ordem dos Genes , Humanos , Deficiência Intelectual/diagnóstico , Neutropenia/diagnóstico , Neutropenia/genética , Obesidade/diagnóstico , Linhagem , Doenças Retinianas/diagnóstico , SíndromeRESUMO
Syndromic obesity is defined by the association of obesity with one or more feature(s) including developmental delay, dysmorphic traits, and/or congenital malformations. Over 25 syndromic forms of obesity have been identified. However, most cases remain of unknown etiology. The aim of this study was to identify new candidate loci associated with syndromic obesity to find new candidate genes and to better understand molecular mechanisms involved in this pathology. We performed oligonucleotide microarray-based comparative genomic hybridization in a cohort of 100 children presenting with syndromic obesity of unknown etiology, after exhaustive clinical, biological, and molecular studies. Chromosomal copy number variations were detected in 42% of the children in our cohort, with 23% of patients with potentially pathogenic copy number variants. Our results support that chromosomal rearrangements are frequently associated with syndromic obesity with a variety of contributory genes having relevance to either obesity or developmental delay. A list of inherited or apparently de novo duplications and deletions including their enclosed genes and not previously linked to syndromic obesity was established. Proteins encoded by several of these genes are involved in lipid metabolism (ACOXL, MSMO1, MVD, and PDZK1) linked with nervous system function (BDH1 and LINGO2), neutral lipid storage (PLIN2), energy homeostasis and metabolic processes (CDH13, CNTNAP2, CPPED1, NDUFA4, PTGS2, and SOCS6).
Assuntos
Obesidade/diagnóstico , Obesidade/genética , Fenótipo , Locos de Características Quantitativas , Criança , Pré-Escolar , Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Expressão Gênica , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Genômica , Humanos , Lactente , Masculino , SíndromeRESUMO
Autism spectrum disorders (ASD) are neurodevelopmental diseases with complex genetic and environmental etiological factors. Although genetic causes play a significant part in the etiology of ASD, metabolic disturbances may also play a causal role or modulate the clinical features of ASD. The number of ASD studies involving metabolomics is increasing, and sometime with conflicting findings. We assessed the metabolomics profiling of urine samples to determine a comprehensive biochemical signature of ASD. Furthermore, to date no study has combined metabolic profiles obtained from different analytical techniques to distinguish patient with ASD from healthy individuals. We obtained (1)H-NMR spectra and 2D (1)H-(13)C HSQC NMR spectra from urine samples of patients with ASD or healthy controls. We analyzed these spectra by multivariate statistical data analysis. The OPLS-DA model obtained from (1)H NMR spectra showed a good discrimination between ASD samples and non-ASD samples (R(2)Y(cum) = 0.70 and Q(2) = 0.51). Combining the (1)H NMR spectra and the 2D (1)H-(13)C HSQC NMR spectra increased the overall quality and predictive value of the OPLS-DA model (R(2)Y(cum) = 0.84 and Q(2) = 0.71), leading to a better sensitivity and specificity. Urinary excretion of succinate, glutamate and 3-methyl-histidine differed significantly between ASD and non-ASD samples. Urinary screening of children with neurodevelopmental disorders by combining NMR spectroscopies (1D and 2D) in multivariate analysis is a better sensitive and a straightforward method that could help the diagnosis ASD.
Assuntos
Transtornos Globais do Desenvolvimento Infantil/urina , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Criança , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Feminino , Humanos , Masculino , Análise Multivariada , Urinálise/métodos , Urina/químicaRESUMO
Simpson-Golabi-Behmel syndrome (SGBS) is a rare X-linked multiple congenital abnormality/intellectual disability syndrome characterized by pre- and post-natal overgrowth, distinctive craniofacial features, macrocephaly, variable congenital malformations, organomegaly, increased risk of tumor and mild/moderate intellectual deficiency. In 1996, Glypican 3 (GPC3) was identified as the major gene causing SGBS but the mutation detection rate was only 28-70%, suggesting either genetic heterogeneity or that some patients could have alternative diagnoses. This was particularly suggested by some reports of atypical cases with more severe prognoses. In the family reported by Golabi and Rosen, a duplication of GPC4 was recently identified, suggesting that GPC4 could be the second gene for SGBS but no point mutations within GPC4 have yet been reported. In the genetics laboratory in Tours Hospital, GPC3 molecular testing over more than a decade has detected pathogenic mutations in only 8.7% of individuals with SGBS. In addition, GPC4 mutations have not been identified thus raising the question of frequent misdiagnosis. In order to better delineate the phenotypic spectrum of SGBS caused by GPC3 mutations, and to try to define specific clinical criteria for GPC3 molecular testing, we reviewed the clinical features of all male cases with a GPC3 mutation identified in the two molecular laboratories providing this test in France (Tours and Paris). We present here the results of the analysis of 42 patients belonging to 31 families and including five fetuses and three deceased neonates.
Assuntos
Arritmias Cardíacas/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Gigantismo/genética , Glipicanas/genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Mutação , Humanos , FenótipoRESUMO
OBJECTIVE: To determine the frequency and types of renal malformations, and to evaluate renal function in a cohort of patients with Kabuki syndrome (KS). STUDY DESIGN: Renal ultrasound scans and plasma creatinine measurements were collected from a French cohort of 94 patients with genotyped KS. Renal function was evaluated based on the estimated glomerular filtration rate. A genotype-phenotype study was conducted for renal and urinary tract malformations. RESULTS: Renal malformations were present in 22% of cases, and urinary tract anomalies were present in 15%. Renal malformations were observed in 28% of the MLL2 mutation-positive group and in 0% of the MLL2 mutation-negative group (P = .015). No correlation was found between the presence or absence of renal or urinary tract malformations and the location or type of MLL2 mutation. Renal function was normal except for 1 patient with a MLL2 mutation diagnosed in the first days of life and severe renal disease due to unilateral renal agenesia and controlateral severe hypoplasia that progressed to the terminal stage at age 2 years. CONCLUSION: Our study emphasizes the need for ultrasound and renal function screening in children diagnosed with KS.