Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Immunol Cell Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952337

RESUMO

Microbial metabolites can be viewed as the cytokines of the microbiome, transmitting information about the microbial and metabolic environment of the gut to orchestrate and modulate local and systemic immune responses. Still, many immunology studies focus solely on the taxonomy and community structure of the gut microbiota rather than its functions. Early sequencing-based microbiota profiling approaches relied on PCR amplification of small regions of bacterial and fungal genomes to facilitate identification of the microbes present. However, recent microbiome analysis methods, particularly shotgun metagenomic sequencing, now enable culture-independent profiling of microbiome functions and metabolites in addition to taxonomic characterization. In this review, we showcase recent advances in functional metagenomics methods and applications and discuss the current limitations and potential avenues for future development. Importantly, we highlight a few examples of key areas of opportunity in immunology research where integrating functional metagenomic analyses of the microbiome can substantially enhance a mechanistic understanding of microbiome-immune interactions and their contributions to health and disease states.

2.
Biochem Biophys Res Commun ; 456(1): 312-9, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25434996

RESUMO

TRPV4 is involved in several physiological and sensory functions as well as with several diseases and genetic disorders, though the molecular mechanisms for these are unclear. In this work we have analyzed molecular evolution and structure-function relationship of TRPV4 using sequences from different species. TRPV4 has evolved during early vertebrate origin (450million years). Synteny analysis confirms that TRPV4 has coevolved with two enzymes involved in sterol biosynthesis, namely MVK and GLTP. Cholesterol-recognizing motifs are present within highly conserved TM4-Loop4-TM5 region of TRPV4. TRPV4 is present in lipid raft where it co-localizes with Caveolin1 and Filipin. TM4-Loop4-TM5 region as well as Loop4 alone can physically interact with cholesterol, its precursor mevalonate and derivatives such as stigmasterol and aldosterone. Mobility of TRPV4-GFP depends on membrane cholesterol level. Molecular evolution of TRPV4 shared striking parallelism with the cholesterol bio-synthesis pathways at the genetic, molecular and metabolic levels. We conclude that interaction with sterols and cholesterol-dependent membrane dynamics have influence on TRPV4 function. These results may have importance on TRPV4-medaited cellular functions and pathophysiology.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Caveolina 1/metabolismo , Biologia Computacional , Bases de Dados de Proteínas , Evolução Molecular , Filipina/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Software
3.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37977851

RESUMO

Acinetobacter spp. and other non-fermenting Gram-negative bacteria (NFGNB) represent an important group of opportunistic pathogens due to their propensity for multiple, intrinsic, or acquired antimicrobial resistance (AMR). Antimicrobial resistant bacteria and their genes can spread to the environment through livestock manure. This study investigated the effects of fresh manure from dairy cows under antibiotic prophylaxis on the antibiotic resistome and AMR hosts in microcosms using pasture soil. We specifically focused on culturable Acinetobacter spp. and other NFGNB using CHROMagar Acinetobacter. We conducted two 28-days incubation experiments to simulate natural deposition of fresh manure on pasture soil and evaluated the effects on antibiotic resistance genes (ARGs) and bacterial hosts through shotgun metagenomics. We found that manure application altered the abundance and composition of ARGs and their bacterial hosts, and that the effects depended on the soil source. Manure enriched the antibiotic resistome of bacteria only in the soil where native bacteria had a low abundance of ARGs. Our study highlights the role of native soil bacteria in modulating the consequences of manure deposition on soil and confirms the potential of culturable Acinetobacter spp. and other NFGNB to accumulate AMR in pasture soil receiving fresh manure.


Assuntos
Acinetobacter , Antibacterianos , Animais , Bovinos , Feminino , Antibacterianos/farmacologia , Solo , Esterco/microbiologia , Genes Bacterianos , Bactérias/genética , Acinetobacter/genética , Bactérias Gram-Negativas/genética , Microbiologia do Solo
4.
Sci Rep ; 12(1): 16173, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171216

RESUMO

Invertebrate-microbial associations are widespread in the biosphere and are often related to the function of novel genes, fitness advantages, and even speciation events. Despite ~ 13,000 species of millipedes identified across the world, millipedes and their gut microbiota are markedly understudied compared to other arthropods. Exploring the contribution of individual host-associated microbes is often challenging as many are uncultivable. In this study, we conducted metatranscriptomic profiling of different body segments of a millipede at the holobiont level. This is the first reported transcriptome assembly of a tropical millipede Telodeinopus aoutii (Demange, 1971), as well as the first study on any Myriapoda holobiont. High-throughput RNA sequencing revealed that Telodeinopus aoutii contained > 90% of the core Arthropoda genes. Proteobacteria, Bacteroidetes, Firmicutes, and Euryarchaeota represented dominant and functionally active phyla in the millipede gut, among which 97% of Bacteroidetes and 98% of Firmicutes were present exclusively in the hindgut. A total of 37,831 predicted protein-coding genes of millipede holobiont belonged to six enzyme classes. Around 35% of these proteins were produced by microbiota in the hindgut and 21% by the host in the midgut. Our results indicated that although major metabolic pathways operate at the holobiont level, the involvement of some host and microbial genes are mutually exclusive and microbes predominantly contribute to essential amino acid biosynthesis, short-chain fatty acid metabolism, and fermentation.


Assuntos
Artrópodes , Microbioma Gastrointestinal , Aminoácidos Essenciais , Animais , Artrópodes/genética , Bacteroidetes , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/genética
5.
PLoS One ; 13(2): e0192293, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420579

RESUMO

Plants, bacteria and some fungi are known to produce indole-3-acetic acid (IAA) by employing various pathways. Among these pathways, the indole-3-pyruvic acid (IPA) pathway is the best studied in green plants and plant-associated beneficial microbes. While IAA production circuitry in plants has been studied for decades, little is known regarding the IAA biosynthesis pathway in fungal species. Here, we present the first data for IAA-producing genes and the associated biosynthesis pathway in a non-pathogenic fungus, Neurospora crassa. For this purpose, we used a computational approach to determine the genes and outlined the IAA production circuitry in N. crassa. We then validated these data with experimental evidence. Here, we describe the homologous genes that are present in the IPA pathway of IAA production in N. crassa. High-performance liquid chromatography and thin-layer chromatography unambiguously identified IAA, indole-3-lactic acid (ILA) and tryptophol (TOL) from cultures supplemented with tryptophan. Deletion of the gene (cfp) that encodes the enzyme indole-3-pyruvate decarboxylase, which converts IPA to indole-3-acetaldehyde (IAAld), results in an accumulation of higher levels of ILA in the N. crassa culture medium. A double knock-out strain (Δcbs-3;Δahd-2) for the enzyme IAAld dehydrogenase, which converts IAAld to IAA, shows a many fold decrease in IAA production compared with the wild type strain. The Δcbs-3;Δahd-2 strain also displays slower conidiation and produces many fewer conidiospores than the wild type strain.


Assuntos
Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Neurospora crassa/metabolismo , Sequência de Aminoácidos , Técnicas de Silenciamento de Genes , Genes Fúngicos , Neurospora crassa/genética , Homologia de Sequência de Aminoácidos
6.
PLoS One ; 7(4): e31448, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496727

RESUMO

BACKGROUND: Transient Receptor Potential Vanilloid sub type 1 (TRPV1), commonly known as capsaicin receptor can detect multiple stimuli ranging from noxious compounds, low pH, temperature as well as electromagnetic wave at different ranges. In addition, this receptor is involved in multiple physiological and sensory processes. Therefore, functions of TRPV1 have direct influences on adaptation and further evolution also. Availability of various eukaryotic genomic sequences in public domain facilitates us in studying the molecular evolution of TRPV1 protein and the respective conservation of certain domains, motifs and interacting regions that are functionally important. METHODOLOGY AND PRINCIPAL FINDINGS: Using statistical and bioinformatics tools, our analysis reveals that TRPV1 has evolved about ∼420 million years ago (MYA). Our analysis reveals that specific regions, domains and motifs of TRPV1 has gone through different selection pressure and thus have different levels of conservation. We found that among all, TRP box is the most conserved and thus have functional significance. Our results also indicate that the tubulin binding sequences (TBS) have evolutionary significance as these stretch sequences are more conserved than many other essential regions of TRPV1. The overall distribution of positively charged residues within the TBS motifs is conserved throughout evolution. In silico analysis reveals that the TBS-1 and TBS-2 of TRPV1 can form helical structures and may play important role in TRPV1 function. CONCLUSIONS AND SIGNIFICANCE: Our analysis identifies the regions of TRPV1, which are important for structure-function relationship. This analysis indicates that tubulin binding sequence-1 (TBS-1) near the TRP-box forms a potential helix and the tubulin interactions with TRPV1 via TBS-1 have evolutionary significance. This interaction may be required for the proper channel function and regulation and may also have significance in the context of Taxol®-induced neuropathy.


Assuntos
Evolução Molecular , Seleção Genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Animais , Citocromos c/genética , Citocromos c/metabolismo , Histonas/genética , Histonas/metabolismo , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Serpentes/genética , Serpentes/metabolismo
7.
PLoS One ; 7(6): e39399, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737237

RESUMO

OVO-like proteins (OVOL) are members of the zinc finger protein family and serve as transcription factors to regulate gene expression in various differentiation processes. Recent studies have shown that OVOL genes are involved in epithelial development and differentiation in a wide variety of organisms; yet there is a lack of comprehensive studies that describe OVOL proteins from an evolutionary perspective. Using comparative genomic analysis, we traced three different OVOL genes (OVOL1-3) in vertebrates. One gene, OVOL3, was duplicated during a whole-genome-duplication event in fish, but only the copy (OVOL3b) was retained. From early-branching metazoa to humans, we found that a core domain, comprising a tetrad of C2H2 zinc fingers, is conserved. By domain comparison of the OVOL proteins, we found that they evolved in different metazoan lineages by attaching intrinsically-disordered (ID) segments of N/C-terminal extensions of 100 to 1000 amino acids to this conserved core. These ID regions originated independently across different animal lineages giving rise to different types of OVOL genes over the course of metazoan evolution. We illustrated the molecular evolution of metazoan OVOL genes over a period of 700 million years (MY). This study both extends our current understanding of the structure/function relationship of metazoan OVOL genes, and assembles a good platform for further characterization of OVOL genes from diverged organisms.


Assuntos
Proteínas de Transporte/química , Proteínas de Ligação a DNA/química , Fatores de Transcrição/química , Dedos de Zinco , Animais , Proteínas de Transporte/genética , Linhagem da Célula , Sequência Conservada , Proteínas de Ligação a DNA/genética , Drosophila , Evolução Molecular , Peixes , Genoma , Genômica , Humanos , Lagartos , Camundongos , Modelos Moleculares , Gambás , Filogenia , Estrutura Terciária de Proteína , Ratos , Análise de Sequência de DNA , Fatores de Transcrição/genética , Perus , Xenopus , Peixe-Zebra
8.
Channels (Austin) ; 5(4): 375-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21750411

RESUMO

TRP channels are localized at specialized sub-cellular compartments like filopodial tips, ciliary structures, growth cones and spines that have importance in the context of several sensory functions. Several motor proteins largely regulate these localizations. Recent studies indicate that both physical and genetic interactions exist between TRP channels with actin and microtubule-based motor proteins. These two groups of proteins share specialized and fine regulation underlying physiological functions. Indeed, mutations causing loss of these interactions and regulations result in development of pathophysiological disorders and syndromes. In this review we analyze the recent progress made in cell-biological, biochemical, electrophysiological and genetic studies and summarize the multi-dimensional crosstalk between TRP channels with different motor proteins.


Assuntos
Actinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Actinas/genética , Animais , Cílios/genética , Cílios/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Pseudópodes/genética , Pseudópodes/metabolismo , Canais de Potencial de Receptor Transitório/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA