Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(24): 4458-4471, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35686856

RESUMO

The neurodegenerative disease amyotrophic lateral sclerosis (ALS) is associated with the misfolding and aggregation of the metalloenzyme protein superoxide dismutase 1 (SOD1) via mutations that destabilize the monomer-dimer interface. In a cellular environment, crowding and electrostatic screening play essential roles in the folding and aggregation of the SOD1 monomers. Despite numerous studies on the effects of mutations on SOD1 folding, a clear understanding of the interplay between crowding, folding, and aggregation in vivo remains lacking. Using a structure-based minimal model for molecular dynamics simulations, we investigate the role of self-crowding and charge on the folding stability of SOD1 and the G41D mutant where experimentalists were intrigued by an alteration of the folding mechanism by a single point mutation from glycine to charged aspartic acid. We show that unfolded SOD1 configurations are significantly affected by charge and crowding, a finding that would be extremely costly to achieve with all-atom simulations, while the native state is not significantly altered. The mutation at residue 41 alters the interactions between proteins in the unfolded states instead of those within a protein. This paper suggests electrostatics may play an important role in the folding pathway of SOD1 and modifying the charge via mutation and ion concentration may change the dominant interactions between proteins, with potential impacts for aggregation of the mutants. This work provides a plausible reason for the alteration of the unfolded states to address why the mutant G41D causes the changes to the folding mechanism of SOD1 that have intrigued experimentalists.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Humanos , Mutação , Dobramento de Proteína , Superóxido Dismutase/química , Superóxido Dismutase-1/química
2.
Front Plant Sci ; 12: 733129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899771

RESUMO

Over the past years, RNA interference (RNAi) has been used as a promising combat strategy against a wide range of pests and pathogens in ensuring global food security. It involves the induction of highly specific posttranscriptional regulation of target essential genes from an organism, via the application of precursor long, non-coding double-stranded RNA (dsRNA) molecules that share sequence-complementarity with the mRNAs of the targets. Fungal blast disease caused by Magnaporthe oryzae is one of the most deadly diseases of rice and wheat incurring huge losses in global crop yield. To date, the host-induced gene silencing (HIGS) and virus-induced gene silencing (VIGS) aspects of RNAi have been successfully exploited in developing resistance against M. oryzae in rice. Spray-induced gene silencing (SIGS) is a current, potential, non-transformative, and environment-friendly pest and pathogen management strategy, where naked or nanomaterial-bound dsRNA are sprayed on leaves to cause selective knockdown of pathogenicity genes. Although it relies on the ability of fungal pathogens to uptake sprayed RNA, its efficiency varies largely across phytopathogens and their genes, targeted for silencing. Here, we report a transient dsRNA supplementation system for the targeted knockdown of MoDES1, a host-defense suppressor pathogenicity gene from M. oryzae. We validate the feasibility of in vivo SIGS and post-uptake transfer of RNA signals to distal plant parts in rice-M. oryzae pathosystem through a GFP-based reporter system. A protocol for efficient silencing via direct foliar spray of naked dsRNA was optimized. As proof-of-concept, we demonstrate the phenotypic impacts of in vitro dsDES1 treatment on growth, conidiation, ROS-scavenging ability, and pathogenic potential of M. oryzae. Furthermore, our extrapolatory dsDES1 spray experiments on wounded leaves and whole rice plants indicate resultant silencing of MoDES1 that conferred significant resistance against the fungal blast disease. The evaluation of primary and secondary host defense responses provides evidence supporting the notion that spray of sequence-specific dsRNA on wounded leaf tissue can cause systemic and sustained silencing of a M. oryzae target gene. For the first time, we establish a transgene-free SIGS approach as a promising crop protection strategy against the notorious rice-blast fungus.

3.
Plant Biotechnol (Tokyo) ; 38(4): 433-441, 2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35087308

RESUMO

Rice is an important staple crop and fungal blast disease destroys about 10-30% of its global produce, annually. Although genetic manipulation has largely been employed in crop-improvement programmes and agricultural biotechnology, the ease of transformation of several recalcitrant indica cultivars continues to be a challenge. HR-12 and CO-39 are two indica cultivars that are commonly used in breeding programmes, but are susceptible to biotic threats like fungal blast and sheath blight disease. Here in this study, we have optimised a rapid and reproducible transformation protocol for the said cultivars, having compared both the tissue-culture and in-planta methods of transformation. Murashige & Skoog basal media supplemented with maltose and 2.5 mg l-1 2,4-D induced efficient callogenesis in HR-12, while maltose with 3 mg l-1 2,4-D gave optimum results in case of CO-39. The media containing 0.5 mg l-1 NAA, 3 mg l-1 BAP, and 1 mg l-1 kinetin yielded a maximum regeneration efficiency of 62% and 65% in HR-12 and CO-39, respectively. The studies with Agrobacterium tumefaciens, LBA4404 strain harbouring pCAMBIA1303 suggested that although these cultivars demonstrated successful gene-transfer, they failed to regenerate efficiently, post-transformation. Alternatively, our modified in-planta piercing and vacuum infiltration-based protocol resulted in 33-35% transformation efficiency in less than half the time required for tissue-culture based transformation method. As per our knowledge, it is among the highest obtained from existing piercing-based direct transformation protocols in rice, and can also be implemented in genetically manipulating other recalcitrant varieties of rice.

4.
FEMS Microbiol Lett ; 368(1)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33355334

RESUMO

Rice blast caused by Magnaporthe oryzae continues to be a major constraint in rice production worldwide. Rice is one of the staple crops in India and rice blast causes huge economic losses. Interestingly, the Indian subcontinent is the centre for origin and diversity of rice as well as the Magnaporthe species complex. Secondary metabolites are known to play important role in pathogenesis and M. oryzae has high potential of genes involved in secondary metabolism but, unfortunately most of them remain uncharacterized. In the present study, we analysed the draft genome assemblies of M. oryzae strains isolated from different parts of India, for putative secondary metabolite key gene (SMKG) clusters encoding polyketide synthases, non-ribosomal peptide synthetases, diterpene cyclases and dimethylallyl tryptophan synthase. Based on the complete genome sequence of 70-15 strain and its previous reports of identified SMKGs, we have identified the key genes for the interrogated strains. Expression analysis of these genes amongst different strains indicates how they have evolved depending on the host and environmental conditions. To our knowledge, this study is first of its kind where the secondary metabolism genes and their role in functional adaptation were studied across several strains of M. oryzae.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Família Multigênica , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Ascomicetos/classificação , Ascomicetos/enzimologia , Proteínas Fúngicas/metabolismo , Oryza/microbiologia , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Doenças das Plantas/microbiologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA