Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Immunity ; 45(1): 10-2, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27438762

RESUMO

Highly active killer T cells mediate a stable standoff during controlled persistent infections. In this issue of Immunity, Robey and colleagues describe a unique antigen-addicted T cell population bearing characteristics of both effector and memory CD8(+) T cells that provides a continuous supply of potent killer T cells to curb Toxoplasma gondii growth during latency.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Toxoplasma/imunologia , Humanos , Linfócitos T Citotóxicos/imunologia
2.
Neuropathol Appl Neurobiol ; 50(3): e12977, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38680020

RESUMO

AIM: Leigh syndrome (LS), the most common paediatric presentation of genetic mitochondrial dysfunction, is a multi-system disorder characterised by severe neurologic and metabolic abnormalities. Symmetric, bilateral, progressive necrotizing lesions in the brainstem are defining features of the disease. Patients are often symptom free in early life but typically develop symptoms by about 2 years of age. The mechanisms underlying disease onset and progression in LS remain obscure. Recent studies have shown that the immune system causally drives disease in the Ndufs4(-/-) mouse model of LS: treatment of Ndufs4(-/-) mice with the macrophage-depleting Csf1r inhibitor pexidartinib prevents disease. While the precise mechanisms leading to immune activation and immune factors involved in disease progression have not yet been determined, interferon-gamma (IFNγ) and interferon gamma-induced protein 10 (IP10) were found to be significantly elevated in Ndufs4(-/-) brainstem, implicating these factors in disease. Here, we aimed to explore the role of IFNγ and IP10 in LS. METHODS: To establish the role of IFNγ and IP10 in LS, we generated IFNγ and IP10 deficient Ndufs4(-/-)/Ifng(-/-) and Ndufs4(-/-)/IP10(-/-) double knockout animals, as well as IFNγ and IP10 heterozygous, Ndufs4(-/-)/Ifng(+/-) and Ndufs4(-/-)/IP10(+/-), animals. We monitored disease onset and progression to define the impact of heterozygous or homozygous loss of IFNγ and IP10 in LS. RESULTS: Loss of IP10 does not significantly impact the onset or progression of disease in the Ndufs4(-/-) model. IFNγ loss significantly extends survival and delays disease progression in a gene dosage-dependent manner, though the benefits are modest compared to Csf1r inhibition. CONCLUSIONS: IFNγ contributes to disease onset and progression in LS. Our findings suggest that IFNγ targeting therapies may provide some benefits in genetic mitochondrial disease, but targeting IFNγ alone would likely yield only modest benefits in LS.


Assuntos
Progressão da Doença , Complexo I de Transporte de Elétrons , Interferon gama , Doença de Leigh , Animais , Camundongos , Tronco Encefálico/patologia , Tronco Encefálico/metabolismo , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/deficiência , Interferon gama/metabolismo , Doença de Leigh/patologia , Doença de Leigh/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Immunity ; 42(6): 1116-29, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26084026

RESUMO

Immune memory cells are poised to rapidly expand and elaborate effector functions upon reinfection yet exist in a functionally quiescent state. The paradigm is that memory T cells remain inactive due to lack of T cell receptor (TCR) stimuli. Here, we report that regulatory T (Treg) cells orchestrate memory T cell quiescence by suppressing effector and proliferation programs through inhibitory receptor, cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Loss of Treg cells resulted in activation of genome-wide transcriptional programs characteristic of effector T cells and drove transitioning as well as established memory CD8(+) T cells toward terminally differentiated KLRG-1(hi)IL-7Rα(lo)GzmB(hi) phenotype, with compromised metabolic fitness, longevity, polyfunctionality, and protective efficacy. CTLA-4 functionally replaced Treg cells in trans to rescue memory T cell defects and restore homeostasis. These studies present the CTLA-4-CD28-CD80/CD86 axis as a potential target to accelerate vaccine-induced immunity and improve T cell memory quality in current cancer immunotherapies proposing transient Treg cell ablation.


Assuntos
Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/metabolismo , Memória Imunológica , Linfócitos T Reguladores/imunologia , Abatacepte , Animais , Antígenos B7/metabolismo , Células Cultivadas , Citotoxicidade Imunológica/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Granzimas/metabolismo , Homeostase/efeitos dos fármacos , Imunoconjugados/administração & dosagem , Memória Imunológica/efeitos dos fármacos , Memória Imunológica/genética , Lectinas Tipo C , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Terapia de Alvo Molecular , Receptores Imunológicos/metabolismo , Receptores de Interleucina-7/metabolismo , Transdução de Sinais/genética
4.
J Immunol ; 201(12): 3641-3650, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30455400

RESUMO

IL-1, generally considered an amplifier of adaptive immune responses, has been proposed for use as adjuvant during immunization with weak immunogens. However, its effects on memory T cell function remain largely undefined. Using the murine model of acute viral infection, in this paper, we show that in addition to augmenting the size of the Ag-specific pool, IL-1 signals act directly on CD8 T cells to promote the quality of effector and memory responses. Ablation of IL-1R1 or MyD88 signaling in T cells led to functional impairment; both the ability to produce multiple cytokines on a per cell basis (polyfunctionality) and the potential for recall proliferation in response to antigenic restimulation were compromised. IL-1 supplementation during priming augmented the expansion of Ag-specific CD8 T cells through the MyD88-IRAK1/4 axis, resulting in a larger memory pool capable of robust secondary expansion in response to rechallange. Together, these findings demonstrate a critical role of the IL-1-MyD88 axis in programming the quantity and quality of memory CD8 T cell responses and support the notion that IL-1 supplementation may be exploited to enhance adoptive T cell therapies against cancers and chronic infections.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Interleucina-1/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Reprogramação Celular , Técnicas de Reprogramação Celular , Humanos , Memória Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais
5.
Immunity ; 32(1): 91-103, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20096608

RESUMO

CD25, the high-affinity interleukin-2 (IL-2) receptor alpha chain, is rapidly upregulated by antigen-specific CD8(+) T cells after T cell receptor stimulation. Here, we demonstrate that during an acute viral infection, CD25 expression is quite dynamic-after initial upregulation, a subset of virus-specific T cells sustains CD25 expression longer than the rest. At this time when there is distinct heterogeneity in CD25 expression, examination of the in vivo fate of effector cells revealed that CD25(lo) cells, which are relatively less sensitive to IL-2, preferentially upregulate CD127 and CD62L and give rise to functional long-lived memory cells. In contrast, CD25(hi) cells perceiving prolonged IL-2 signals proliferate more rapidly, are prone to apoptosis, exhibit a more pronounced effector phenotype, and appear to be terminally differentiated. Consistent with this, sustained IL-2 receptor signaling during expansion drove terminal-effector differentiation. These data support the hypothesis that prolonged IL-2 signals during priming promote terminal-effector differentiation.


Assuntos
Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Subpopulações de Linfócitos T/citologia , Animais , Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Separação Celular , Citometria de Fluxo , Expressão Gênica/genética , Expressão Gênica/imunologia , Memória Imunológica/genética , Memória Imunológica/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
6.
J Virol ; 90(19): 8934-46, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466420

RESUMO

UNLABELLED: PD-1 is an inhibitory receptor that has a major role in T cell dysfunction during chronic infections and cancer. While demethylation of the PD-1 promoter DNA is observed in exhausted T cells isolated from chronically infected individuals, little is known about when this stable demethylation of PD-1 promoter DNA is programmed during the course of a chronic infection. To assess if PD-1 promoter DNA demethylation is impacted by prolonged stimulation during effector phase of chronic infection, we adoptively transferred virus-specific day 8 effector CD8 T cells from mice infected with lymphocytic choriomeningitis virus (LCMV) clone 13 into recipient mice that had cleared an acute infection. We observed that LCMV-specific CD8 T cells from chronically infected mice maintained their surface expression of PD-1 even after transfer into acute immune mice until day 45 posttransfer. Interestingly, the PD-1 transcriptional regulatory region continued to remain unmethylated in these donor CD8 T cells generated from a chronic infection. The observed maintenance of PD-1 surface expression and the demethylated PD-1 promoter were not a result of residual antigen in the recipient mice, because similar results were seen when chronic infection-induced effector cells were transferred into mice infected with a variant strain of LCMV (LCMV V35A) bearing a mutation in the cognate major histocompatibility complex class I (MHC-I) epitope that is recognized by the donor CD8 T cells. Importantly, the maintenance of PD-1 promoter demethylation in memory CD8 T cells was coupled with impaired clonal expansion and higher PD-1 re-expression upon secondary challenge. These data show that the imprinting of the epigenetic program of the inhibitory receptor PD-1 occurs during the effector phase of chronic viral infection. IMPORTANCE: Since PD-1 is a major inhibitory receptor regulating T cell dysfunction during chronic viral infection and cancers, a better understanding of the mechanisms that regulate PD-1 expression is important. In this work, we demonstrate that the PD-1 epigenetic program in antigen-specific CD8 T cells is fixed during the priming phase of chronic infection.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Metilação de DNA , Regulação da Expressão Gênica , Vírus da Coriomeningite Linfocítica/imunologia , Receptor de Morte Celular Programada 1/biossíntese , Receptor de Morte Celular Programada 1/genética , Regiões Promotoras Genéticas , Transferência Adotiva , Linfócitos T CD8-Positivos/metabolismo , Doença Crônica , Epigênese Genética , Coriomeningite Linfocítica/imunologia
7.
Crit Rev Clin Lab Sci ; 53(2): 132-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26479950

RESUMO

The discovery of vitamin D receptor (VDR) expression in immune cells has opened up a new area of research into immunoregulation by vitamin D, a niche that is distinct from its classical role in skeletal health. Today, about three decades since this discovery, numerous cellular and molecular targets of vitamin D in the immune system have been delineated. Moreover, strong clinical associations between vitamin D status and the incidence/severity of many immune-regulated disorders (e.g. infectious diseases, cancers and autoimmunity) have prompted the idea of using vitamin D supplementation to manipulate disease outcome. While much is known about the effects of vitamin D on innate immune responses and helper T (T(H)) cell immunity, there has been relatively limited progress on the frontier of cytotoxic T lymphocyte (CTL) immunity--an arm of host cellular adaptive immunity that is crucial for the control of such intracellular pathogens as human immunodeficiency virus (HIV), tuberculosis (TB), malaria, and hepatitis C virus (HCV). In this review, we discuss the strong historical and clinical link between vitamin D and infectious diseases that involves cytotoxic T lymphocyte (CTL) immunity, present our current understanding as well as critical knowledge gaps in the realm of vitamin D regulation of host CTL responses, and highlight potential regulatory connections between vitamin D and effector and memory CD8 T cell differentiation events during infections.


Assuntos
Doenças Transmissíveis/imunologia , Imunidade , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Vitamina D/metabolismo , Animais , Suplementos Nutricionais , Humanos , Neoplasias/patologia
8.
J Cell Biochem ; 116(8): 1500-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25694395

RESUMO

It is now well known that in the mammalian body vitamin D is converted by successive hydroxylations to 1,25-dihydroxyvitamin D (1,25D), a steroid-like hormone with pleiotropic properties. These include important contributions to the control of cell proliferation, survival and differentiation, as well as the regulation of immune responses in disease. Here, we present recent advances in current understanding of the role of 1,25D in myelopoiesis and lymphopoiesis, and the potential of 1,25D and analogs (vitamin D derivatives; VDDs) for the control of hematopoietic malignancies. The reasons for the unimpressive results of most clinical studies of the therapeutic effects of VDDs in leukemia and related diseases may include the lack of a precise rationale for the conduct of these studies. Further, clinical trials to date have generally used extremely heterogeneous patient populations and, in many cases, small numbers of patients, generally without controls. Although low calcemic VDDs have been used and combined with agents that can increase the leukemia cell killing or differentiation effects in acute leukemias, the sequencing of agents used for combination therapy should to be more clearly delineated. Most importantly, it is recommended that in future clinical trials the rationale for the basis of the enhancing action of drug combinations should be clearly articulated and the effects on anticancer immunity should also be evaluated.


Assuntos
Hematopoese/efeitos dos fármacos , Leucemia/tratamento farmacológico , Vitamina D/administração & dosagem , Vitaminas/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Diferenciação Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Humanos , Leucemia/patologia , Vitamina D/análogos & derivados , Vitamina D/farmacologia , Vitaminas/farmacologia
9.
Blood ; 121(22): 4473-83, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23596046

RESUMO

The precise microRNAs and their target cellular processes involved in generation of durable T-cell immunity remain undefined. Here we show a dynamic regulation of microRNAs as CD8 T cells differentiate from naïve to effector and memory states, with short-lived effectors transiently expressing higher levels of oncogenic miR-17-92 compared with the relatively less proliferating memory-fated effectors. Conditional CD8 T-cell-intrinsic gain or loss of expression of miR-17-92 in mature cells after activation resulted in striking reciprocal effects compared with wild-type counterparts in the same infection milieu-miR-17-92 deletion resulted in lesser proliferation of antigen-specific cells during primary expansion while favoring enhanced IL-7Rα and Bcl-2 expression and multicytokine polyfunctionality; in contrast, constitutive expression of miR-17-92 promoted terminal effector differentiation, with decreased formation of polyfunctional lymphoid memory cells. Increased proliferation upon miR-17-92 overexpression correlated with decreased expression of tumor suppressor PTEN and increased PI3K-AKT-mTOR signaling. Thus, these studies identify miR17-92 as a critical regulator of CD8 T-cell expansion and effector and memory lineages in the physiological context of acute infection, and present miR-17-92 as a potential target for modulating immunologic outcome after vaccination or immunotherapeutic treatments of cancer, chronic infections, or autoimmune disorders.


Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/genética , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica , MicroRNAs/imunologia , Doença Aguda , Animais , Infecções por Arenaviridae/genética , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Proliferação de Células , Feminino , Coriomeningite Linfocítica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/virologia , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica/imunologia , Regulação para Cima/imunologia
10.
J Allergy Clin Immunol ; 134(3): 634-644.e10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24767879

RESUMO

BACKGROUND: CCR10 and CCL27 make up the most skin-specific chemokine receptor/ligand pair implicated in skin allergy and inflammatory diseases, including atopic dermatitis and psoriasis. This pair is thought to regulate the migration, maintenance, or both of skin T cells and is suggested to be therapeutic targets for treatment of skin diseases. However, the functional importance of CCR10/CCL27 in vivo remains elusive. OBJECTIVE: We sought to determine the expression and function of CCR10 in different subsets of skin T cells under both homeostatic and inflammatory conditions to gain a mechanistic insight into the potential roles of CCR10 during skin inflammation. METHODS: Using heterozygous and homozygous CCR10 knockout/enhanced green fluorescent protein knockin mice, we assessed the expression of CCR10 on regulatory and effector T cells of healthy and inflamed skin induced by chemicals, pathogens, and autoreactive T cells. In addition, we assessed the effect of CCR10 knockout on the maintenance and functions of different T cells and inflammatory status in the skin during different phases of the immune response. RESULTS: CCR10 expression is preferentially induced on memory-like skin-resident T cells and their progenitors for their maintenance in homeostatic skin but not expressed on most skin-infiltrating effector T cells during inflammation. In CCR10 knockout mice the imbalanced presence and dysregulated function of resident regulatory and effector T cells result in over-reactive and prolonged innate and memory responses in the skin, leading to increased clearance of Leishmania species infection in the skin. CONCLUSION: CCR10 is a critical regulator of skin immune homeostasis.


Assuntos
Dermatite Atópica/imunologia , Psoríase/imunologia , Receptores CCR10/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoimunidade/genética , Células Cultivadas , Quimiocina CCL27/metabolismo , Homeostase , Humanos , Imunidade Inata/genética , Memória Imunológica , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Receptores CCR10/genética , Pele/imunologia , Regulação para Cima
11.
J Virol ; 87(13): 7737-46, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23637417

RESUMO

Long-lived plasma cells that reside in the bone marrow constitutively produce antibody in the absence of antigen and are the cellular basis of durable humoral immunity. The generation of these long-lived plasma cells depends upon a series of highly orchestrated interactions between antigen-specific CD4 T cells and B cells and the formation of germinal centers (GCs). In this study, we have examined the role of the cytokine interleukin-21 (IL-21) in regulating humoral immunity during acute viral infections. Using IL-21 receptor-deficient (IL-21R(-/-)) mice, we found that virus-specific CD4 T cells were generated after infection with lymphocytic choriomeningitis virus (LCMV) and that these CD4 T cells differentiated into T follicular helper (TFH)-like cells in the absence of IL-21 signaling. There was also no defect in the formation of GCs, although after day 15 these GCs disappeared faster in IL-21R(-/-) mice than in wild-type mice. Isotype switching and the initial LCMV-specific IgG response were normal in IL-21R(-/-) mice. However, these mice exhibited a profound defect in generating long-lived plasma cells and in sustaining antibody levels over time. Similar results were seen after infection of IL-21R(-/-) mice with vesicular stomatitis virus and influenza virus. Using chimeric mice containing wild-type or IL-21R(-/-) CD4 T cells and B cells, we showed that both B and CD4 T cells need IL-21 signaling for generating long-term humoral immunity. Taken together, our results highlight the importance of IL-21 in humoral immunity to viruses.


Assuntos
Diferenciação Celular/imunologia , Imunidade Humoral/imunologia , Interleucinas/imunologia , Plasmócitos/imunologia , Viroses/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Centro Germinativo/imunologia , Testes de Hemaglutinação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testes de Neutralização , Plasmócitos/virologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interleucina-21/genética
12.
J Nutr ; 144(12): 2073-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25320188

RESUMO

BACKGROUND: Vitamin D insufficiency is associated with broad-ranging human disease sequelae such as bone disease, cancer, cardiovascular disease, allergy, autoimmune disorders, diabetes, and infectious diseases. Disease risk and severity of a large proportion of the nonskeletal disorders heavily involve the cytotoxic cluster of differentiation (CD) 8 T lymphocyte (CTL) arm of cellular adaptive immunity. Considering the importance of vitamin D in CTL-dependent diseases, there is a critical need for systematic in-depth explorations into the role of vitamin D deficiency in generation and maintenance of CTL immunity during infections and vaccinations. OBJECTIVE: With the use of wild-type (WT) vitamin D-sufficient mice and the vitamin D receptor knockout (Vdr(-/-)) mouse model of in vivo deficiency of vitamin D signaling, we systematically analyzed the impact of vitamin D deficiency on antigen-specific effector and memory CD8 T cell responses to acute viral and bacterial infections. METHODS: WT and Vdr(-/-) mice were infected with lymphocytic choriomeningitis virus, a natural mouse pathogen, and antigen-specific CTL responses were analyzed during priming, expansion, contraction, and memory phases. Magnitude, breadth, cytokine production, and localization of antiviral effector and memory CTLs to lymphoid and nonlymphoid tissues were specifically assessed. RESULTS: The absence of vitamin D signals led to 1) aberrant CD8 T cell effector differentiation (∼2-fold lower granzyme B and reduced B cell lymphoma 2; P ≤ 0.05) and enhanced contraction (∼15% increase; P ≤ 0.05) in antigen-specific CTLs; 2) a significantly restricted (P ≤ 0.05) breadth of the antigen-specific CD8 T cell effector and memory repertoire; and 3) preferential localization of effector (∼2.5-fold increase; P ≤ 0.01) and memory (∼5-fold increase; P ≤ 0.001) CD8 T cells to the lymph nodes compared to nonlymphoid tissues. CONCLUSION: Our data show a previously unrecognized impact of vitamin D deficiency on the quantity, quality, breadth, and location of CD8 T cell immunity to acute viral and bacterial infections.


Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores de Calcitriol/metabolismo , Deficiência de Vitamina D/imunologia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe I/metabolismo , Memória Imunológica , Ativação Linfocitária , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Receptores de Calcitriol/imunologia , Linfócitos T Citotóxicos/imunologia , Vitamina D/administração & dosagem
13.
Proc Natl Acad Sci U S A ; 108(52): 21182-7, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160724

RESUMO

CD4 T cells play a critical role in regulating CD8 T-cell responses during chronic viral infection. Several studies in animal models and humans have shown that the absence of CD4 T-cell help results in severe dysfunction of virus-specific CD8 T cells. However, whether function can be restored in already exhausted CD8 T cells by providing CD4 T-cell help at a later time remains unexplored. In this study, we used a mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection to address this question. Adoptive transfer of LCMV-specific CD4 T cells into chronically infected mice restored proliferation and cytokine production by exhausted virus-specific CD8 T cells and reduced viral burden. Although the transferred CD4 T cells were able to enhance function in exhausted CD8 T cells, these CD4 T cells expressed high levels of the programmed cell death (PD)-1 inhibitory receptor. Blockade of the PD-1 pathway increased the ability of transferred LCMV-specific CD4 T cells to produce effector cytokines, improved rescue of exhausted CD8 T cells, and resulted in a striking reduction in viral load. These results suggest that CD4 T-cell immunotherapy alone or in conjunction with blockade of inhibitory receptors may be a promising approach for treating CD8 T-cell dysfunction in chronic infections and cancer.


Assuntos
Infecções por Arenaviridae/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Vírus da Coriomeningite Linfocítica , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/transplante , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/metabolismo , Estatísticas não Paramétricas
14.
Sports Med Health Sci ; 5(2): 137-145, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37424529

RESUMO

High intensity interval training (HIIT) causes oxidative stress and haematological alteration. Present study was aimed to evaluate the effect of 8 weeks' supplementation of vitamin C and E on HIIT induced changes in lipid profile parameters and haematological variables. Hundred six male adolescent players were randomly assigned into five age-matched groups, i.e., Control (no exercise+placebo), HIIT (placebo), HIIT â€‹+ â€‹vitamin-C (1 000 â€‹mg/day), HIIT â€‹+ â€‹vitamin-E 400 IU/day) and combined HIIT â€‹+ â€‹vitamin C and E. Morning and evening sessions (90 â€‹min) of HIIT included 4 phases (15 â€‹min each) with 3 sets (4 â€‹min each). Each 4 â€‹min HIIT set consisted of 2 â€‹min intense sprint workout (90%-95% of heart rate maximum [HRmax]) followed by 1 â€‹min active recovery (60%-70% HRmax) followed by 1 â€‹min of complete rest (1:1 work-rest ratio). Lipid profile parameters, haematological variables, endurance capacity and vertical jump were evaluated by standard protocols. Significant decrease in body weight, fat%, total cholesterol, triglyceride, Total Cholesterol/High Density Lipoprotein-Cholesterol and significant increase in High Density Lipoprotein-Cholesterol, maximal oxygen consumption, vertical jump were observed for all four intervention groups. White blood cell count, red blood cell count, haemoglobin percentage and haematocrit values were significantly decreased while platelet count and platelet-to-leukocyte ratio (PLR) ratio were increased significantly only for HIIT group. Blood level of tocopherol and ascorbic acid was significantly increased (values were within the normal range) in all the respective vitamin supplemented groups. Supplementation of vitamin C and E secures health protection with suppressed haemolysis and improved inflammatory blood variables with enhanced explosive leg strength and lipid profile parameters without any concomitant change in endurance capacity.

15.
Brain Pathol ; 33(6): e13192, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552802

RESUMO

Subacute necrotizing encephalopathy, or Leigh syndrome (LS), is the most common pediatric presentation of genetic mitochondrial disease. LS is a multi-system disorder with severe neurologic, metabolic, and musculoskeletal symptoms. The presence of progressive, symmetric, and necrotizing lesions in the brainstem are a defining feature of the disease, and the major cause of morbidity and mortality, but the mechanisms underlying their pathogenesis have been elusive. Recently, we demonstrated that high-dose pexidartinib, a CSF1R inhibitor, prevents LS CNS lesions and systemic disease in the Ndufs4(-/-) mouse model of LS. While the dose-response in this study implicated peripheral immune cells, the immune populations involved have not yet been elucidated. Here, we used a targeted genetic tool, deletion of the colony-stimulating Factor 1 receptor (CSF1R) macrophage super-enhancer FIRE (Csf1rΔFIRE), to specifically deplete microglia and define the role of microglia in the pathogenesis of LS. Homozygosity for the Csf1rΔFIRE allele ablates microglia in both control and Ndufs4(-/-) animals, but onset of CNS lesions and sequalae in the Ndufs4(-/-), including mortality, are only marginally impacted by microglia depletion. The overall development of necrotizing CNS lesions is not altered, though microglia remain absent. Finally, histologic analysis of brainstem lesions provides direct evidence of a causal role for peripheral macrophages in the characteristic CNS lesions. These data demonstrate that peripheral macrophages play a key role in the pathogenesis of disease in the Ndufs4(-/-) model.


Assuntos
Doença de Leigh , Doenças Mitocondriais , Humanos , Camundongos , Animais , Criança , Doença de Leigh/genética , Doença de Leigh/patologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Macrófagos/patologia , Tronco Encefálico/patologia , Modelos Animais de Doenças
16.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693598

RESUMO

Hydrogels generally have broad utilization in healthcare due to their tunable structures, high water content, and inherent biocompatibility. FDA-approved applications of hydrogels include spinal cord regeneration, skin fillers, and local therapeutic delivery. Drawbacks exist in the clinical hydrogel space, largely pertaining to inconsistent therapeutic exposure, short-lived release windows, and difficulties inserting the polymer into tissue. In this study, we engineered injectable, biocompatible hydrogels that function as a local protein therapeutic depot with a high degree of user-customizability. We showcase a PEG-based hydrogel functionalized with bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) handles for its polymerization and functionalization with a variety of payloads. Small-molecule and protein cargos, including chemokines and antibodies, were site-specifically modified with hydrolysable "azidoesters" of varying hydrophobicity via direct chemical conjugation or sortase-mediated transpeptidation. These hydrolysable esters afforded extended release of payloads linked to our hydrogels beyond diffusion; with timescales spanning days to months dependent on ester hydrophobicity. Injected hydrogels polymerize in situ and remain in tissue over extended periods of time. Hydrogel-delivered protein payloads elicit biological activity after being modified with SPAAC-compatible linkers, as demonstrated by the successful recruitment of murine T-cells to a mouse melanoma model by hydrolytically released murine CXCL10. These results highlight a highly versatile, customizable hydrogel-based delivery system for local delivery of protein therapeutics with payload release profiles appropriate for a variety of clinical needs.

17.
Cell Rep ; 39(2): 110632, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417685

RESUMO

Differential interleukin-2 (IL-2) signaling and production are associated with disparate effector and memory fates. Whether the IL-2 signals perceived by CD8 T cells come from autocrine or paracrine sources, the timing of IL-2 signaling and their differential impact on CD8 T cell responses remain unclear. Using distinct models of germline and conditional IL-2 ablation in post-thymic CD8 T cells, this study shows that paracrine IL-2 is sufficient to drive optimal primary expansion, effector and memory differentiation, and metabolic function. In contrast, autocrine IL-2 is uniquely required during primary expansion to program robust secondary expansion potential in memory-fated cells. This study further shows that IL-2 production by antigen-specific CD8 T cells is largely independent of CD4 licensing of dendritic cells (DCs) in inflammatory infections with robust DC activation. These findings bear implications for immunizations and adoptive T cell immunotherapies, where effector and memory functions may be commandeered through IL-2 programming.


Assuntos
Memória Imunológica , Interleucina-2 , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
18.
Virology ; 567: 77-86, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032866

RESUMO

Type-I interferon (IFN-I) signals exert a critical role in disease progression during viral infections. However, the immunomodulatory mechanisms by which IFN-I dictates disease outcomes remain to be fully defined. Here we report that IFN-I signals mediate thymic atrophy in viral infections, with more severe and prolonged loss of thymic output and unique kinetics and subtypes of IFN-α/ß expression in chronic infection compared to acute infection. Loss of thymic output was linked to inhibition of early stages of thymopoiesis (DN1-DN2 transition, and DN3 proliferation) and pronounced apoptosis during the late DP stage. Notably, infection-associated thymic defects were largely abrogated upon ablation of IFNαßR and partially mitigated in the absence of CD8 T cells, thus implicating direct as well as indirect effects of IFN-I on thymocytes. These findings provide mechanistic underpinnings for immunotherapeutic strategies targeting IFN-1 signals to manipulate disease outcomes during chronic infections and cancers.


Assuntos
Atrofia/virologia , Interferon-alfa/imunologia , Interferon beta/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Timócitos/virologia , Timo/virologia , Animais , Atrofia/genética , Atrofia/imunologia , Atrofia/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Doença Crônica , Feminino , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Interferon-alfa/genética , Interferon beta/genética , Linfonodos/imunologia , Linfonodos/patologia , Linfonodos/virologia , Depleção Linfocítica , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais/imunologia , Análise de Célula Única , Timócitos/imunologia , Timócitos/patologia , Timo/imunologia , Timo/patologia
19.
J Immunol ; 182(4): 1868-76, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19201839

RESUMO

B cells can influence T cell responses by directly presenting Ag or by secreting Ab that binds to Ag to form immunogenic complexes. Conflicting evidence suggests that persisting Ag-Ab complexes propagate long-term T cell memory; yet, other data indicate that memory cells can survive without specific Ag or MHC. In this study, the roles of B cells and Ag-Ab complexes in T cell responses to lymphocytic choriomeningitis virus (LCMV) infection were investigated using B cell-deficient or B cell-competent mice. Despite normal lymphocyte expansion after acute infection, B cell-deficient mice rapidly lost CD4(+) T cell memory, but not CD8(+) T cell memory, during the contraction phase. To determine whether Ag-Ab complexes sustain CD4(+) T cell memory, T cell responses were followed in B cell-transgenic (mIg-Tg) mice that have B cells but neither LCMV-specific Ab nor LCMV-immune complex deposition. In contrast to B cell-deficient mice, mIg-Tg mice retained functional Th cell memory, indicating that B cells selectively preserve CD4(+) T cell memory independently of immune complex formation. An in vivo consequence of losing CD4(+) T cell memory was that B cell-deficient mice were unable to resolve chronic virus infection. These data implicate a B cell function other than Ab production that induces long-term protective immunity.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Transgênicos
20.
J Leukoc Biol ; 110(4): 809-819, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464639

RESUMO

Vitamin D, a key nutrient/prohormone classically associated with skeletal health, is also an important immunomodulator, with pleotropic effects on innate and adaptive immune cells. Outcomes of several chronic, autoimmune, and infectious diseases are linked to vitamin D. Emergent correlations of vitamin D insufficiency with coronavirus-induced disease 2019 (COVID-19) severity, alongside empirical and clinical evidence of immunoregulation by vitamin D in other pulmonary diseases, have prompted proposals of vitamin D supplementation to curb the COVID-19 public health toll. In this review paper, we engage an immunological lens to discuss potential mechanisms by which vitamin D signals might regulate respiratory disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infections, vis a vis other pulmonary infections. It is proposed that vitamin D signals temper lung inflammatory cascades during SARS-CoV2 infection, and insufficiency of vitamin D causes increased inflammatory cytokine storm, thus leading to exacerbated respiratory disease. Additionally, analogous to studies of reduced cancer incidence, the dosage of vitamin D compounds administered to patients near the upper limit of safety may serve to maximize immune health benefits and mitigate inflammation and disease severity in SARS-CoV2 infections. We further deliberate on the importance of statistically powered clinical correlative and interventional studies, and the need for in-depth basic research into vitamin D-dependent host determinants of respiratory disease severity.


Assuntos
COVID-19/complicações , Síndrome da Liberação de Citocina/patologia , Inflamação/patologia , SARS-CoV-2/isolamento & purificação , Deficiência de Vitamina D/fisiopatologia , COVID-19/imunologia , COVID-19/virologia , Síndrome da Liberação de Citocina/etiologia , Humanos , Inflamação/etiologia , Índice de Gravidade de Doença , Deficiência de Vitamina D/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA