Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2319313121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551834

RESUMO

Optimal feedback control provides an abstract framework describing the architecture of the sensorimotor system without prescribing implementation details such as what coordinate system to use, how feedback is incorporated, or how to accommodate changing task complexity. We investigate how such details are determined by computational and physical constraints by creating a model of the upper limb sensorimotor system in which all connection weights between neurons, feedback, and muscles are unknown. By optimizing these parameters with respect to an objective function, we find that the model exhibits a preference for an intrinsic (joint angle) coordinate representation of inputs and feedback and learns to calculate a weighted feedforward and feedback error. We further show that complex reaches around obstacles can be achieved by augmenting our model with a path-planner based on via points. The path-planner revealed "avoidance" neurons that encode directions to reach around obstacles and "placement" neurons that make fine-tuned adjustments to via point placement. Our results demonstrate the surprising capability of computationally constrained systems and highlight interesting characteristics of the sensorimotor system.


Assuntos
Aprendizagem , Músculos , Retroalimentação , Neurônios , Retroalimentação Sensorial/fisiologia
2.
Brain ; 145(11): 3886-3900, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35703986

RESUMO

Successful outcomes in epilepsy surgery rely on the accurate localization of the seizure onset zone. Localizing the seizure onset zone is often a costly and time-consuming process wherein a patient undergoes intracranial EEG monitoring, and a team of clinicians wait for seizures to occur. Clinicians then analyse the intracranial EEG before each seizure onset to identify the seizure onset zone and localization accuracy increases when more seizures are captured. In this study, we develop a new approach to guide clinicians to actively elicit seizures with electrical stimulation. We propose that a brain region belongs to the seizure onset zone if a periodic stimulation at a particular frequency produces large amplitude oscillations in the intracranial EEG network that propagate seizure activity. Such responses occur when there is 'resonance' in the intracranial EEG network, and the resonant frequency can be detected by observing a sharp peak in the magnitude versus frequency response curve, called a Bode plot. To test our hypothesis, we analysed single-pulse electrical stimulation response data in 32 epilepsy patients undergoing intracranial EEG monitoring. For each patient and each stimulated brain region, we constructed a Bode plot by estimating a transfer function model from the intracranial EEG 'impulse' or single-pulse electrical stimulation response. The Bode plots were then analysed for evidence of resonance. First, we showed that when Bode plot features were used as a marker of the seizure onset zone, it distinguished successful from failed surgical outcomes with an area under the curve of 0.83, an accuracy that surpassed current methods of analysis with cortico-cortical evoked potential amplitude and cortico-cortical spectral responses. Then, we retrospectively showed that three out of five native seizures accidentally triggered in four patients during routine periodic stimulation at a given frequency corresponded to a resonant peak in the Bode plot. Last, we prospectively stimulated peak resonant frequencies gleaned from the Bode plots to elicit seizures in six patients, and this resulted in an induction of three seizures and three auras in these patients. These findings suggest neural resonance as a new biomarker of the seizure onset zone that can guide clinicians in eliciting native seizures to more quickly and accurately localize the seizure onset zone.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Estudos Retrospectivos , Convulsões/cirurgia , Eletrocorticografia/métodos , Encéfalo , Eletroencefalografia/métodos
3.
Brain ; 145(11): 3901-3915, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36412516

RESUMO

Over 15 million epilepsy patients worldwide have drug-resistant epilepsy. Successful surgery is a standard of care treatment but can only be achieved through complete resection or disconnection of the epileptogenic zone, the brain region(s) where seizures originate. Surgical success rates vary between 20% and 80%, because no clinically validated biological markers of the epileptogenic zone exist. Localizing the epileptogenic zone is a costly and time-consuming process, which often requires days to weeks of intracranial EEG (iEEG) monitoring. Clinicians visually inspect iEEG data to identify abnormal activity on individual channels occurring immediately before seizures or spikes that occur interictally (i.e. between seizures). In the end, the clinical standard mainly relies on a small proportion of the iEEG data captured to assist in epileptogenic zone localization (minutes of seizure data versus days of recordings), missing opportunities to leverage these largely ignored interictal data to better diagnose and treat patients. IEEG offers a unique opportunity to observe epileptic cortical network dynamics but waiting for seizures increases patient risks associated with invasive monitoring. In this study, we aimed to leverage interictal iEEG data by developing a new network-based interictal iEEG marker of the epileptogenic zone. We hypothesized that when a patient is not clinically seizing, it is because the epileptogenic zone is inhibited by other regions. We developed an algorithm that identifies two groups of nodes from the interictal iEEG network: those that are continuously inhibiting a set of neighbouring nodes ('sources') and the inhibited nodes themselves ('sinks'). Specifically, patient-specific dynamical network models were estimated from minutes of iEEG and their connectivity properties revealed top sources and sinks in the network, with each node being quantified by source-sink metrics. We validated the algorithm in a retrospective analysis of 65 patients. The source-sink metrics identified epileptogenic regions with 73% accuracy and clinicians agreed with the algorithm in 93% of seizure-free patients. The algorithm was further validated by using the metrics of the annotated epileptogenic zone to predict surgical outcomes. The source-sink metrics predicted outcomes with an accuracy of 79% compared to an accuracy of 43% for clinicians' predictions (surgical success rate of this dataset). In failed outcomes, we identified brain regions with high metrics that were untreated. When compared with high frequency oscillations, the most commonly proposed interictal iEEG feature for epileptogenic zone localization, source-sink metrics outperformed in predictive power (by a factor of 1.2), suggesting they may be an interictal iEEG fingerprint of the epileptogenic zone.


Assuntos
Epilepsia , Convulsões , Humanos , Estudos Retrospectivos , Eletrocorticografia/métodos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Biomarcadores
4.
Neuromodulation ; 26(3): 552-562, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36402658

RESUMO

OBJECTIVES: Chronic pain is primarily treated with pharmaceuticals, but the effects remain unsatisfactory. A promising alternative therapy is peripheral nerve stimulation (PNS), but it has been associated with suboptimal efficacy because its modulation mechanisms are not clear and the current therapies are primarily open loop (ie, manually adjusting the stimulation parameters). In this study, we developed a proof-of-concept computational modeling as the first step toward implementing closed-loop PNS in future biological studies. When developing new pain therapies, a useful pain biomarker is the wide-dynamic-range (WDR) neuron activity in the dorsal horn. In healthy animals, the WDR neuron activity occurs in a stereotyped manner; however, this response profile can vary widely after nerve injury to create a chronic pain condition. We hypothesized that if injury-induced changes of neuronal response can be normalized to resemble those of a healthy condition, the pathological aspects of pain may be treated while maintaining protective physiological nociception. MATERIALS AND METHODS: Using an in vivo electrophysiology data set of WDR neuron recordings obtained in nerve-injured rats and naïve rats, we constructed sets of linear phenomenologic models of WDR firing rate during windup stimulation for both conditions. Then, we applied robust control systems techniques to identify a closed-loop PNS controller, which can drive the dynamics of WDR neuron response in neuropathic pain model into ranges associated with normal physiological pain. RESULTS: The sets of identified linear models can accurately predict, in silico, nonlinear neural responses to electrical stimulation of the peripheral nerve. In addition, we showed that continuous closed-loop control of PNS can be used to normalize WDR neuron firing responses in three injured cases. CONCLUSIONS: In this proof-of-concept study, we show how tractable, linear mathematical models of pain-related neurotransmission can be used to inform the development of closed-loop PNS. This new application of robust control to neurotechnology may also be expanded and applied across other neuromodulation applications.


Assuntos
Dor Crônica , Neuralgia , Estimulação Elétrica Nervosa Transcutânea , Ratos , Animais , Neurônios/fisiologia , Neuralgia/terapia , Nervos Periféricos
5.
PLoS Comput Biol ; 17(12): e1009712, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932550

RESUMO

Hypoxemia is a significant driver of mortality and poor clinical outcomes in conditions such as brain injury and cardiac arrest in critically ill patients, including COVID-19 patients. Given the host of negative clinical outcomes attributed to hypoxemia, identifying patients likely to experience hypoxemia would offer valuable opportunities for early and thus more effective intervention. We present SWIFT (SpO2 Waveform ICU Forecasting Technique), a deep learning model that predicts blood oxygen saturation (SpO2) waveforms 5 and 30 minutes in the future using only prior SpO2 values as inputs. When tested on novel data, SWIFT predicts more than 80% and 60% of hypoxemic events in critically ill and COVID-19 patients, respectively. SWIFT also predicts SpO2 waveforms with average MSE below .0007. SWIFT predicts both occurrence and magnitude of potential hypoxemic events 30 minutes in the future, allowing it to be used to inform clinical interventions, patient triaging, and optimal resource allocation. SWIFT may be used in clinical decision support systems to inform the management of critically ill patients during the COVID-19 pandemic and beyond.


Assuntos
COVID-19/fisiopatologia , Estado Terminal , Aprendizado Profundo , Hipóxia/sangue , Saturação de Oxigênio , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Unidades de Terapia Intensiva , Pandemias , SARS-CoV-2/isolamento & purificação
6.
Proc Natl Acad Sci U S A ; 116(4): 1404-1413, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30617071

RESUMO

A person's decisions vary even when options stay the same, like when a gambler changes bets despite constant odds of winning. Internal bias (e.g., emotion) contributes to this variability and is shaped by past outcomes, yet its neurobiology during decision-making is not well understood. To map neural circuits encoding bias, we administered a gambling task to 10 participants implanted with intracerebral depth electrodes in cortical and subcortical structures. We predicted the variability in betting behavior within and across patients by individual bias, which is estimated through a dynamical model of choice. Our analysis further revealed that high-frequency activity increased in the right hemisphere when participants were biased toward risky bets, while it increased in the left hemisphere when participants were biased away from risky bets. Our findings provide electrophysiological evidence that risk-taking bias is a lateralized push-pull neural system governing counterintuitive and highly variable decision-making in humans.


Assuntos
Córtex Cerebral/fisiologia , Adulto , Viés , Mapeamento Encefálico/métodos , Tomada de Decisões , Feminino , Jogo de Azar/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Assunção de Riscos
7.
Neural Comput ; 32(5): 865-886, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32186997

RESUMO

The ability to move fast and accurately track moving objects is fundamentally constrained by the biophysics of neurons and dynamics of the muscles involved. Yet the corresponding trade-offs between these factors and tracking motor commands have not been rigorously quantified. We use feedback control principles to quantify performance limitations of the sensorimotor control system (SCS) to track fast periodic movements. We show that (1) linear models of the SCS fail to predict known undesirable phenomena, including skipped cycles, overshoot and undershoot, produced when tracking signals in the "fast regime," while nonlinear pulsatile control models can predict such undesirable phenomena, and (2) tools from nonlinear control theory allow us to characterize fundamental limitations in this fast regime. Using a validated and tractable nonlinear model of the SCS, we derive an analytical upper bound on frequencies that the SCS model can reliably track before producing such undesirable phenomena as a function of the neurons' biophysical constraints and muscle dynamics. The performance limitations derived here have important implications in sensorimotor control. For example, if the primary motor cortex is compromised due to disease or damage, the theory suggests ways to manipulate muscle dynamics by adding the necessary compensatory forces using an assistive neuroprosthetic device to restore motor performance and, more important, fast and agile movements. Just how one should compensate can be informed by our SCS model and the theory developed here.


Assuntos
Fenômenos Biomecânicos/fisiologia , Córtex Motor/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Fenômenos Biofísicos/fisiologia , Confiabilidade dos Dados , Retroalimentação , Humanos , Dinâmica não Linear
8.
J Sleep Res ; 29(5): e12991, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32030843

RESUMO

In this study, we aim to automate the sleep stage scoring process of overnight polysomnography (PSG) data while adhering to expert-based rules. We developed a sleep stage scoring algorithm utilizing the generalized linear modelling (GLM) framework and extracted features from electroencephalogram (EEG), electromyography (EMG) and electrooculogram (EOG) signals based on predefined rules of the American Academy of Sleep Medicine (AASM) Manual for Scoring Sleep. Specifically, features were computed in 30-s epochs in the time and frequency domains of the signals and were then used to model the probability of an epoch being in each of five sleep stages: N3, N2, N1, REM or Wake. Finally, each epoch was assigned to a sleep stage based on model predictions. The algorithm was trained and tested on PSG data from 38 healthy individuals with no reported sleep disturbances. The overall scoring accuracy reached on the test set was 81.50 ± 1.14% (Cohen's kappa, κ=0.73±0.02 ). The test set results were highly comparable to the training set, indicating robustness of the algorithm. Furthermore, our algorithm was compared to three well-known commercialized sleep-staging tools and achieved higher accuracies than all of them. Our results suggest that automatic classification is highly consistent with visual scoring. We conclude that our algorithm can reproduce the judgement of a scoring expert and is also highly interpretable. This tool can assist visual scorers to speed up their process (from hours to minutes) and provides a method for a more robust, quantitative, reproducible and cost-effective PSG evaluation, supporting assessment of sleep and sleep disorders.


Assuntos
Polissonografia/métodos , Fases do Sono/fisiologia , Adulto , Feminino , Humanos , Modelos Lineares , Masculino , Adulto Jovem
9.
Neuromodulation ; 23(1): 36-45, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31162783

RESUMO

OBJECTIVES: High-frequency spinal cord stimulation (SCS) administered below the sensory threshold (subparesthetic) can inhibit pain, but the mechanisms remain obscure. We examined how different SCS paradigms applied at intensities below the threshold of Aß-fiber activation (sub-sensory threshold) affect spinal nociceptive transmission in rats after an L5 spinal nerve ligation (SNL). MATERIALS AND METHODS: Electrophysiology was used to record local field potential (LFP) at L4 spinal cord before, during, and 0-60 min after SCS in SNL rats. LFP was evoked by high-intensity paired-pulse test stimulation (5 mA, 0.2 msec, 400 msec interval) at the sciatic nerve. Epidural SCS was delivered through a miniature electrode placed at T13-L1 and L2-L3 spinal levels. Four patterns of SCS (200 Hz, 1 msec; 500 Hz, 0.5 msec; 1200 Hz; 0.2 msec; 10,000 Hz, 0.024 msec, 30 min, bipolar) were tested at 90% Aß-threshold as a subthreshold intensity. As a positive control, traditional SCS (50 Hz, 0.2 msec) was tested at 100% Aß-plateau as a suprathreshold intensity. RESULTS: Traditional suprathreshold SCS at T13-L1 level significantly reduced LFP to C-fiber inputs (C-LFP). Subthreshold SCS of 200 and 500 Hz, but not 1200 or 10,000 Hz, also reduced C-LFP, albeit to a lesser extent than did traditional SCS (n = 7-10/group). When SCS was applied at the L2-L3 level, only traditional SCS and subthreshold SCS of 200 Hz inhibited C-LFP (n = 8-10/group). CONCLUSIONS: Traditional suprathreshold SCS acutely inhibits spinal nociceptive transmission. Low-frequency subthreshold SCS with a long pulse width (200 Hz, 1 msec), but not higher-frequency SCS, also attenuates C-LFP.


Assuntos
Nociceptividade/fisiologia , Limiar da Dor/fisiologia , Estimulação da Medula Espinal/métodos , Nervos Espinhais/lesões , Nervos Espinhais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Vértebras Lombares , Masculino , Ratos , Ratos Sprague-Dawley , Vértebras Torácicas
10.
J Comput Neurosci ; 46(1): 3-17, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30511274

RESUMO

High-resolution whole brain recordings have the potential to uncover unknown functionality but also present the challenge of how to find such associations between brain and behavior when presented with a large number of regions and spectral frequencies. In this paper, we propose an exploratory data analysis method that sorts through a massive quantity of multivariate neural recordings to quickly extract a subset of brain regions and frequencies that encode behavior. This approach combines existing tools and exploits low-rank approximation of matrices without a priori selection of regions and frequency bands for analysis. In detail, the spectral content of neural activity across all frequencies of each recording contact is computed and represented as a matrix. Then, the rank-1 approximation of the matrix is computed using singular value decomposition and the associated singular vectors are extracted. The temporal singular vector, which captures the salient features of the spectrogram, is then correlated to the trial-varying behavioral signal. The distribution of correlations for each brain region is efficiently computed and used to find a subset of regions and frequency bands of interest for further examination. As an illustration, we apply this approach to a data set of local field potentials collected using stereoelectroencephalography from a human subject performing a reaching task. Using the proposed procedure, we produced a comprehensive set of brain regions and frequencies related to our specific behavior. We demonstrate how this tool can produce preliminary results that capture neural patterns related to behavior and aid in formulating data-driven hypotheses, hence reducing the time it takes for any scientist to transition from the exploratory to the confirmatory phase.


Assuntos
Encéfalo/fisiologia , Análise de Dados , Modelos Neurológicos , Algoritmos , Mapeamento Encefálico , Eletroencefalografia , Humanos , Neurônios/fisiologia
11.
J Comput Neurosci ; 46(1): 125-140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30317462

RESUMO

Language is mediated by pathways connecting distant brain regions that have diverse functional roles. For word production, the network includes a ventral pathway, connecting temporal and inferior frontal regions, and a dorsal pathway, connecting parietal and frontal regions. Despite the importance of word production for scientific and clinical purposes, the functional connectivity underlying this task has received relatively limited attention, and mostly from techniques limited in either spatial or temporal resolution. Here, we exploited data obtained from depth intra-cerebral electrodes stereotactically implanted in eight epileptic patients. The signal was recorded directly from various structures of the neocortex with high spatial and temporal resolution. The neurophysiological activity elicited by a picture naming task was analyzed in the time-frequency domain (10-150 Hz), and functional connectivity between brain areas among ten regions of interest was examined. Task related-activities detected within a network of the regions of interest were consistent with findings in the literature, showing task-evoked desynchronization in the beta band and synchronization in the gamma band. Surprisingly, long-range functional connectivity was not particularly stronger in the beta than in the high-gamma band. The latter revealed meaningful sub-networks involving, notably, the temporal pole and the inferior frontal gyrus (ventral pathway), and parietal regions and inferior frontal gyrus (dorsal pathway). These findings are consistent with the hypothesized network, but were not detected in every patient. Further research will have to explore their robustness with larger samples.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Fala/fisiologia , Adulto , Mapeamento Encefálico , Eletroencefalografia , Epilepsia/fisiopatologia , Feminino , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos
12.
Neuromodulation ; 22(2): 163-171, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30556616

RESUMO

OBJECTIVES: Spinal cord stimulation (SCS) represents an important neurostimulation therapy for pain. A new ultra-high frequency (10,000 Hz) SCS paradigm has shown improved pain relief without eliciting paresthesia. We aim to determine whether sub-sensory threshold SCS of lower frequencies also can inhibit mechanical hypersensitivity in nerve-injured rats and examine how electric charge delivery of stimulation may affect pain inhibition by different patterns of subthreshold SCS. MATERIALS AND METHODS: We used a custom-made quadripolar electrode (Medtronic Inc., Minneapolis, MN, USA) to provide bipolar SCS epidurally at the T10 to T12 vertebral level. According to previous findings, SCS was tested at 40% of the motor threshold, which is considered to be a sub-sensory threshold intensity in rats. Paw withdrawal thresholds to punctate mechanical stimulation were measured before and after SCS in rats that received an L5 spinal nerve ligation. RESULTS: Both 10,000 Hz (10 kHz, 0.024 msec) and lower frequencies (200 Hz, 1 msec; 500 Hz, 0.5 msec; 1200 Hz; 0.2 msec) of subthreshold SCS (120 min) attenuated mechanical hypersensitivity, as indicated by increased paw withdrawal thresholds after stimulation in spinal nerve ligation rats. Pain inhibition from different patterns of subthreshold SCS was not governed by individual stimulation parameters. However, correlation analysis suggests that pain inhibition from 10 kHz subthreshold SCS in individual animals was positively correlated with the electric charges delivered per second (electrical dose). CONCLUSIONS: Inhibition of neuropathic mechanical hypersensitivity can be achieved with low-frequency subthreshold SCS by optimizing the electric charge delivery, which may affect the effect of SCS in individual animals.


Assuntos
Hiperalgesia/terapia , Neuralgia/fisiopatologia , Neuralgia/terapia , Limiar Sensorial/fisiologia , Estimulação da Medula Espinal/métodos , Animais , Biofísica , Modelos Animais de Doenças , Hiperalgesia/fisiopatologia , Masculino , Medição da Dor , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
13.
J Comput Neurosci ; 45(3): 193-206, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30443813

RESUMO

Electrical stimulation of nerve fibers is used as a therapeutic tool to treat neurophysiological disorders. Despite efforts to model the effects of stimulation, its underlying mechanisms remain unclear. Current mechanistic models quantify the effects that the electrical field produces near the fiber but do not capture interactions between action potentials (APs) initiated by stimulus and APs initiated by underlying physiological activity. In this study, we aim to quantify the effects of stimulation frequency and fiber diameter on AP interactions involving collisions and loss of excitability. We constructed a mechanistic model of a myelinated nerve fiber receiving two inputs: the underlying physiological activity at the terminal end of the fiber, and an external stimulus applied to the middle of the fiber. We define conduction reliability as the percentage of physiological APs that make it to the somatic end of the nerve fiber. At low input frequencies, conduction reliability is greater than 95% and decreases with increasing frequency due to an increase in AP interactions. Conduction reliability is less sensitive to fiber diameter and only decreases slightly with increasing fiber diameter. Finally, both the number and type of AP interactions significantly vary with both input frequencies and fiber diameter. Modeling the interactions between APs initiated by stimulus and APs initiated by underlying physiological activity in a nerve fiber opens opportunities towards understanding mechanisms of electrical stimulation therapies.


Assuntos
Potenciais de Ação/fisiologia , Estimulação Elétrica , Modelos Neurológicos , Fibras Nervosas Mielinizadas/fisiologia , Condução Nervosa/fisiologia , Animais , Simulação por Computador , Humanos , Reprodutibilidade dos Testes
14.
Proc Natl Acad Sci U S A ; 112(6): E586-95, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25624501

RESUMO

High-frequency deep brain stimulation (HFS) is clinically recognized to treat parkinsonian movement disorders, but its mechanisms remain elusive. Current hypotheses suggest that the therapeutic merit of HFS stems from increasing the regularity of the firing patterns in the basal ganglia (BG). Although this is consistent with experiments in humans and animal models of Parkinsonism, it is unclear how the pattern regularization would originate from HFS. To address this question, we built a computational model of the cortico-BG-thalamo-cortical loop in normal and parkinsonian conditions. We simulated the effects of subthalamic deep brain stimulation both proximally to the stimulation site and distally through orthodromic and antidromic mechanisms for several stimulation frequencies (20-180 Hz) and, correspondingly, we studied the evolution of the firing patterns in the loop. The model closely reproduced experimental evidence for each structure in the loop and showed that neither the proximal effects nor the distal effects individually account for the observed pattern changes, whereas the combined impact of these effects increases with the stimulation frequency and becomes significant for HFS. Perturbations evoked proximally and distally propagate along the loop, rendezvous in the striatum, and, for HFS, positively overlap (reinforcement), thus causing larger poststimulus activation and more regular patterns in striatum. Reinforcement is maximal for the clinically relevant 130-Hz stimulation and restores a more normal activity in the nuclei downstream. These results suggest that reinforcement may be pivotal to achieve pattern regularization and restore the neural activity in the nuclei downstream and may stem from frequency-selective resonant properties of the loop.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Modelos Neurológicos , Vias Neurais/fisiopatologia , Doença de Parkinson/terapia , Simulação por Computador , Humanos
15.
Proc Natl Acad Sci U S A ; 112(23): 7141-6, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25995363

RESUMO

The signal-to-noise ratio (SNR), a commonly used measure of fidelity in physical systems, is defined as the ratio of the squared amplitude or variance of a signal relative to the variance of the noise. This definition is not appropriate for neural systems in which spiking activity is more accurately represented as point processes. We show that the SNR estimates a ratio of expected prediction errors and extend the standard definition to one appropriate for single neurons by representing neural spiking activity using point process generalized linear models (PP-GLM). We estimate the prediction errors using the residual deviances from the PP-GLM fits. Because the deviance is an approximate χ(2) random variable, we compute a bias-corrected SNR estimate appropriate for single-neuron analysis and use the bootstrap to assess its uncertainty. In the analyses of four systems neuroscience experiments, we show that the SNRs are -10 dB to -3 dB for guinea pig auditory cortex neurons, -18 dB to -7 dB for rat thalamic neurons, -28 dB to -14 dB for monkey hippocampal neurons, and -29 dB to -20 dB for human subthalamic neurons. The new SNR definition makes explicit in the measure commonly used for physical systems the often-quoted observation that single neurons have low SNRs. The neuron's spiking history is frequently a more informative covariate for predicting spiking propensity than the applied stimulus. Our new SNR definition extends to any GLM system in which the factors modulating the response can be expressed as separate components of a likelihood function.


Assuntos
Neurônios/fisiologia , Razão Sinal-Ruído , Potenciais de Ação , Animais , Córtex Auditivo/citologia , Cobaias , Funções Verossimilhança
16.
Proc Natl Acad Sci U S A ; 111(52): 18727-32, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25512550

RESUMO

Reinstatement of neural activity is hypothesized to underlie our ability to mentally travel back in time to recover the context of a previous experience. We used intracranial recordings to directly examine the precise spatiotemporal extent of neural reinstatement as 32 participants with electrodes placed for seizure monitoring performed a paired-associates episodic verbal memory task. By cueing recall, we were able to compare reinstatement during correct and incorrect trials, and found that successful retrieval occurs with reinstatement of a gradually changing neural signal present during encoding. We examined reinstatement in individual frequency bands and individual electrodes and found that neural reinstatement was largely mediated by temporal lobe theta and high-gamma frequencies. Leveraging the high temporal precision afforded by intracranial recordings, our data demonstrate that high-gamma activity associated with reinstatement preceded theta activity during encoding, but during retrieval this difference in timing between frequency bands was absent. Our results build upon previous studies to provide direct evidence that successful retrieval involves the reinstatement of a temporal context, and that such reinstatement occurs with precise spatiotemporal dynamics.


Assuntos
Córtex Cerebral/fisiopatologia , Eletroencefalografia , Memória , Convulsões/fisiopatologia , Transmissão Sináptica , Feminino , Humanos , Masculino
17.
Proc Natl Acad Sci U S A ; 111(49): E5321-30, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25404339

RESUMO

The human brain is a dynamic networked system. Patients with partial epileptic seizures have focal regions that periodically diverge from normal brain network dynamics during seizures. We studied the evolution of brain connectivity before, during, and after seizures with graph-theoretic techniques on continuous electrocorticographic (ECoG) recordings (5.4 ± 1.7 d per patient, mean ± SD) from 12 patients with temporal, occipital, or frontal lobe partial onset seizures. Each electrode was considered a node in a graph, and edges between pairs of nodes were weighted by their coherence within a frequency band. The leading eigenvector of the connectivity matrix, which captures network structure, was tracked over time and clustered to uncover a finite set of brain network states. Across patients, we found that (i) the network connectivity is structured and defines a finite set of brain states, (ii) seizures are characterized by a consistent sequence of states, (iii) a subset of nodes is isolated from the network at seizure onset and becomes more connected with the network toward seizure termination, and (iv) the isolated nodes may identify the seizure onset zone with high specificity and sensitivity. To localize a seizure, clinicians visually inspect seizures recorded from multiple intracranial electrode contacts, a time-consuming process that may not always result in definitive localization. We show that network metrics computed from all ECoG channels capture the dynamics of the seizure onset zone as it diverges from normal overall network structure. This suggests that a state space model can be used to help localize the seizure onset zone in ECoG recordings.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Adolescente , Adulto , Área Sob a Curva , Pré-Escolar , Eletrodos , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Adulto Jovem
18.
J Neurosci ; 35(25): 9508-25, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26109672

RESUMO

The premotor cortex (PM) is known to be a site of visuo-somatosensory integration for the production of movement. We sought to better understand the ventral PM (PMv) by modeling its signal encoding in greater detail. Neuronal firing data was obtained from 110 PMv neurons in two male rhesus macaques executing four reach-grasp-manipulate tasks. We found that in the large majority of neurons (∼90%) the firing patterns across the four tasks could be explained by assuming that a high-dimensional position/configuration trajectory-like signal evolving ∼250 ms before movement was encoded within a multidimensional Gaussian field (MGF). Our findings are consistent with the possibility that PMv neurons process a visually specified reference command for the intended arm/hand position trajectory with respect to a proprioceptively or visually sensed initial configuration. The estimated MGF were (hyper) disc-like, such that each neuron's firing modulated strongly only with commands that evolved along a single direction within position/configuration space. Thus, many neurons appeared to be tuned to slices of this input signal space that as a collection appeared to well cover the space. The MGF encoding models appear to be consistent with the arm-referent, bell-shaped, visual target tuning curves and target selectivity patterns observed in PMV visual-motor neurons. These findings suggest that PMv may implement a lookup table-like mechanism that helps translate intended movement trajectory into time-varying patterns of activation in motor cortex and spinal cord. MGFs provide an improved nonlinear framework for potentially decoding visually specified, intended multijoint arm/hand trajectories well in advance of movement.


Assuntos
Modelos Neurológicos , Córtex Motor/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Eletrofisiologia , Força da Mão/fisiologia , Macaca mulatta , Masculino , Análise de Componente Principal
19.
Neural Comput ; 28(7): 1356-87, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27172447

RESUMO

Pyramidal neurons recorded from the rat hippocampus and entorhinal cortex, such as place and grid cells, have diverse receptive fields, which are either unimodal or multimodal. Spiking activity from these cells encodes information about the spatial position of a freely foraging rat. At fine timescales, a neuron's spike activity also depends significantly on its own spike history. However, due to limitations of current parametric modeling approaches, it remains a challenge to estimate complex, multimodal neuronal receptive fields while incorporating spike history dependence. Furthermore, efforts to decode the rat's trajectory in one- or two-dimensional space from hippocampal ensemble spiking activity have mainly focused on spike history-independent neuronal encoding models. In this letter, we address these two important issues by extending a recently introduced nonparametric neural encoding framework that allows modeling both complex spatial receptive fields and spike history dependencies. Using this extended nonparametric approach, we develop novel algorithms for decoding a rat's trajectory based on recordings of hippocampal place cells and entorhinal grid cells. Results show that both encoding and decoding models derived from our new method performed significantly better than state-of-the-art encoding and decoding models on 6 minutes of test data. In addition, our model's performance remains invariant to the apparent modality of the neuron's receptive field.


Assuntos
Potenciais de Ação , Hipocampo , Modelos Neurológicos , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Hipocampo/fisiologia , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA