Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36946464

RESUMO

Female cancer survivors are significantly more likely to experience infertility than the general population. It is well established that chemotherapy and radiotherapy can damage the ovary and compromise fertility, yet the ability of cancer treatments to induce uterine damage, and the underlying mechanisms, have been understudied. Here, we show that in mice total-body γ-irradiation (TBI) induced extensive DNA damage and apoptosis in uterine cells. We then transferred healthy donor embryos into ovariectomized adolescent female mice that were previously exposed to TBI to study the impacts of radiotherapy on the uterus independent from effects to ovarian endocrine function. Following TBI, embryo attachment and implantation were unaffected, but fetal resorption was evident at midgestation in 100% of dams, suggesting failed placental development. Consistent with this hypothesis, TBI impaired the decidual response in mice and primary human endometrial stromal cells. TBI also caused uterine artery endothelial dysfunction, likely preventing adequate blood vessel remodeling in early pregnancy. Notably, when pro-apoptotic protein Puma-deficient (Puma-/-) mice were exposed to TBI, apoptosis within the uterus was prevented, and decidualization, vascular function, and pregnancy were restored, identifying PUMA-mediated apoptosis as a key mechanism. Collectively, these data show that TBI damages the uterus and compromises pregnancy success, suggesting that optimal fertility preservation during radiotherapy may require protection of both the ovaries and uterus. In this regard, inhibition of PUMA may represent a potential fertility preservation strategy.


Assuntos
Proteínas Reguladoras de Apoptose , Placenta , Gravidez , Feminino , Humanos , Camundongos , Animais , Adolescente , Proteínas Reguladoras de Apoptose/metabolismo , Útero/metabolismo , Implantação do Embrião/fisiologia , Placentação
2.
J Ovarian Res ; 13(1): 121, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054849

RESUMO

BACKGROUND: Accurate evaluation of primordial follicle numbers in mouse ovaries is an essential endpoint for studies investigating how endogenous and exogenous insults, such as maternal aging and chemotherapy, impact the ovarian reserve. In this study, we compared and contrasted two methods for counting healthy primordial follicles following exposure to cyclophosphamide (75 mg/kg), a well-established model of follicle depletion. The first was the fractionator/optical dissector technique, an unbiased, assumption-free stereological approach for quantification of primordial follicle numbers. While accurate, highly reproducible and sensitive, this method relies on specialist microscopy equipment and software, requires specific fixation, embedding and sectioning parameters to be followed, and is largely a manual process that is tedious and time-consuming. The second method was the more widely used serial section and direct count approach, which is relatively quick and easy. We also compared the impacts of different fixatives, embedding material and section thickness on the overall results for each method. RESULTS: Direct counts resulted in primordial follicle numbers that were significantly lower than those obtained by stereology, irrespective of fixation and embedding material. When applied to formalin fixed tissue, the direct count method did not detect differences in follicle numbers between saline and cyclophosphamide treated groups to the same degree of sensitivity as the gold standard stereology method (referred to as the Reference standard). However, when Bouin's fixative was used, direct counts and stereology were comparable in their ability to detect follicle depletion caused by cyclophosphamide. CONCLUSIONS: This work indicates that the direct count method can produce similar results to stereology when Bouin's fixative is used instead of formalin. The findings presented here will assist others to select the most appropriate experimental approach for accurate follicle enumeration, depending on whether the primary objective of the study is to determine absolute primordial follicle numbers or relative differences between groups.


Assuntos
Folículo Ovariano/ultraestrutura , Ovário/ultraestrutura , Animais , Feminino , Camundongos
3.
J Vis Exp ; (164)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33135690

RESUMO

Sexually reproducing female mammals are born with their entire lifetime supply of oocytes. Immature, quiescent oocytes are found within primordial follicles, the storage unit of the female germline. They are non-renewable, thus their number at birth and subsequent rate of loss largely dictates the female fertile lifespan. Accurate quantification of primordial follicle numbers in women and animals is essential for determining the impact of medicines and toxicants on the ovarian reserve. It is also necessary for evaluating the need for, and success of, existing and emerging fertility preservation techniques. Currently, no methods exist to accurately measure the number of primordial follicles comprising the ovarian reserve in women. Furthermore, obtaining ovarian tissue from large animals or endangered species for experimentation is often not feasible. Thus, mice have become an essential model for such studies, and the ability to evaluate primordial follicle numbers in whole mouse ovaries is a critical tool. However, reports of absolute follicle numbers in mouse ovaries in the literature are highly variable, making it difficult to compare and/or replicate data. This is due to a number of factors including strain, age, treatment groups, as well as technical differences in the methods of counting employed. In this article, we provide a step-by-step instructional guide for preparing histological sections and counting primordial follicles in mouse ovaries using two different methods: [1] stereology, which relies on the fractionator/optical dissector technique; and [2] the direct count technique. Some of the key advantages and drawbacks of each method will be highlighted so that reproducibility can be improved in the field and to enable researchers to select the most appropriate method for their studies.


Assuntos
Envelhecimento/fisiologia , Folículo Ovariano/fisiologia , Animais , Feminino , Camundongos Endogâmicos C57BL , Inclusão em Parafina , Reprodutibilidade dos Testes , Software , Fixação de Tecidos
4.
Artigo em Inglês | MEDLINE | ID: mdl-30120061

RESUMO

Folliculogenesis describes the process of activating an oocyte-containing primordial follicle from the ovarian reserve and its development to the mature ovulatory stage. This process is highly complex and is controlled by extra- and intra-ovarian signaling events. Oocyte competence and capacity for fertilization to support a viable pregnancy are acquired during folliculogenesis. Cancer and cancer-based therapies can negatively affect this process, compromising fertility. Currently, preservation of fertility in these patients remains limited to surrogacy, oocyte freezing, oocyte donation, or in vitro maturation (IVM). Recent reports of stem cells being used to produce fully competent oocytes and subsequently healthy offspring in mice have opened up a novel avenue for fertility preservation. However, translating these findings into human health first relies on enhancing our understanding of follicle growth and mimicking its intricacies in vitro. Indeed, the future of oocytes from stem cells in humans comes with many possibilities but currently faces several technical and ethical obstacles.


Assuntos
Oócitos/crescimento & desenvolvimento , Oogênese/fisiologia , Folículo Ovariano/fisiologia , Ovário/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Feminino , Preservação da Fertilidade , Humanos , Camundongos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA