Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(13): e2306137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37963826

RESUMO

Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.


Assuntos
Infecções Bacterianas , Hipertermia Induzida , Nanoestruturas , Neoplasias , Animais , Humanos , Hipertermia Induzida/métodos , Fototerapia/métodos , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Infecções Bacterianas/terapia , Fenômenos Magnéticos , Mamíferos
2.
Nanomedicine ; 57: 102734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295912

RESUMO

Basal cell carcinoma (BCC) is the most common form of human cancer, and treatment usually involves surgery, with alternative strategies being needed. We propose the use of carbopol hydrogels (HG) for topical administration of nanographene oxide (GOn) and partially-reduced nanographene oxide (p-rGOn) for photothermal therapy (PTT) of BCC. GOn and p-rGOn incorporated into the HG present lateral sizes ∼200 nm, being stable for 8 months. After 20 min irradiation with an infrared (IR) photothermal therapy lamp (15.70 mW cm-2), GOn-HG increased temperature to 44.7 °C, while p-rGOn-HG reached 47.0 °C. Human skin fibroblasts (HFF-1) cultured with both hydrogels (250 µg mL-1) maintained their morphology and viability. After 20 min IR irradiation, p-rGOn HG (250 µg mL-1) completely eradicated skin cancer cells (A-431). Ex vivo human skin permeability tests showed that the materials can successfully achieve therapeutic concentrations (250 µg mL-1) inside the skin, in 2.0 h for GO HG or 0.5 h for p-rGOn HG.


Assuntos
Grafite , Neoplasias Cutâneas , Humanos , Grafite/farmacologia , Composição de Medicamentos , Fototerapia , Neoplasias Cutâneas/tratamento farmacológico , Hidrogéis , Óxidos , Linhagem Celular Tumoral
3.
Small ; : e2300666, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978237

RESUMO

Breast cancer appears as the major cause of cancer-related deaths in women, with more than 2 260 000 cases reported worldwide in 2020, resulting in 684 996 deaths. Triple-negative breast cancer (TNBC), characterized by the absence of estrogen, progesterone, and human epidermal growth factor type 2 receptors, represents ≈20% of all breast cancers. TNBC has a highly aggressive clinical course and is more prevalent in younger women. The standard therapy for advanced TNBC is chemotherapy, but responses are often short-lived, with high rate of relapse. The lack of therapeutic targets and the limited therapeutic options confer to individuals suffering from TNBC the poorest prognosis among breast cancer patients, remaining a major clinical challenge. In recent years, advances in cancer nanomedicine provided innovative therapeutic options, as nanoformulations play an important role in overcoming the shortcomings left by conventional therapies: payload degradation and its low solubility, stability, and circulating half-life, and difficulties regarding biodistribution due to physiological and biological barriers. In this integrative review, the recent advances in the nanomedicine field for TNBC treatment, including the novel nanoparticle-, exosome-, and hybrid-based therapeutic formulations are summarized and their drawbacks and challenges are discussed for future clinical applications.

4.
Small ; 19(22): e2300029, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36852650

RESUMO

Minimal therapeutic advances have been achieved over the past two decades for glioblastoma (GBM), which remains an unmet clinical need. Here, hypothesis-driven stimuli-responsive nanoparticles (NPs) for docetaxel (DTX) delivery to GBM are reported, with multifunctional features that circumvent insufficient blood-brain barrier (BBB) trafficking and lack of GBM targeting-two major hurdles for anti-GBM therapies. NPs are dual-surface tailored with a i) brain-targeted acid-responsive Angiopep-2 moiety that triggers NP structural rearrangement within BBB endosomal vesicles, and ii) L-Histidine moiety that provides NP preferential accumulation into GBM cells post-BBB crossing. In tumor invasive margin patient cells, the stimuli-responsive multifunctional NPs target GBM cells, enhance cell uptake by 12-fold, and induce three times higher cytotoxicity in 2D and 3D cell models. Moreover, the in vitro BBB permeability is increased by threefold. A biodistribution in vivo trial confirms a threefold enhancement of NP accumulation into the brain. Last, the in vivo antitumor efficacy is validated in GBM orthotopic models following intratumoral and intravenous administration. Median survival and number of long-term survivors are increased by 50%. Altogether, a preclinical proof of concept supports these stimuli-responsive multifunctional NPs as an effective anti-GBM multistage chemotherapeutic strategy, with ability to respond to multiple fronts of the GBM microenvironment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Nanomedicina , Distribuição Tecidual , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Encéfalo , Barreira Hematoencefálica/patologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Linhagem Celular Tumoral , Microambiente Tumoral
5.
J Toxicol Environ Health B Crit Rev ; 26(4): 238-255, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36883725

RESUMO

Firefighters are the principal line of defense against fires, being at elevated risk of exposure to health-relevant pollutants released during fires and burning processes. Although many biomonitoring studies exist, only a limited number of human in vitro investigations in fire risk assessment are currently available. In vitro studies stand out as valuable tools to assess the toxicity mechanisms involved following exposure to fire pollutants at a cellular level. The aim of the present review was to contextualize existing in vitro studies using human cell models exposed to chemicals emitted from fire emissions and wood smoke and discuss the implications of the observed toxic outcomes on adverse health effects detected in firefighters. Most of the reported in vitro investigations focused on monocultures respiratory models and exposure to particulate matter (PM) extracts collected from fire effluents. Overall, (1) a decrease in cellular viability, (2) enhanced oxidative stress, (3) increased pro-inflammatory cytokines levels and (4) elevated cell death frequencies were noted. However, limited information remains regarding the toxicity mechanisms initiated by firefighting activities. Hence, more studies employing advanced in vitro models and exposure systems using human cell lines are urgently needed taking into consideration different routes of exposure and health-related pollutants released from fires. Data are needed to establish and define firefighters' occupational exposure limits and to propose mitigation strategies to promote beneficial human health.


Assuntos
Poluentes Ocupacionais do Ar , Poluentes Ambientais , Bombeiros , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Fumaça/efeitos adversos , Material Particulado/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , Poluentes Ocupacionais do Ar/análise
6.
J Nanobiotechnology ; 21(1): 357, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784150

RESUMO

Colorectal cancer (CRC) is one of the deadliest cancers worldwide, with the 5 year survival rate in metastatic cases limited to 12%. The design of targeted and effective therapeutics remains a major unmet clinical need in CRC treatment. Carcinoembryonic antigen (CEA), a glycoprotein overexpressed in most colorectal tumors, may constitute a promising molecule for generating novel CEA-targeted therapeutic strategies for CRC treatment. Here, we developed a smart nanoplatform based on chemical conjugation of an anti-CEA single-chain variable fragment (scFv), MFE-23, with PLGA-PEG polymers to deliver the standard 5-Fluorouracil (5-FU) chemotherapy to CRC cells. We confirmed the specificity of the developed CEA-targeted NPs on the internalization by CEA-expressing CRC cells, with an enhance of threefold in the cell uptake. Additionally, CEA-targeted NPs loaded with 5-FU induced higher cytotoxicity in CEA-expressing cells, after 24 h and 48 h of treatment, reinforcing the specificity of the targeted NPs. Lastly, the safety of CEA-targeted NPs loaded with 5-FU was evaluated in donor-isolated macrophages, with no relevant impact on their metabolic activity nor polarization. Altogether, this proof of concept supports the CEA-mediated internalization of targeted NPs as a promising chemotherapeutic strategy for further investigation in different CEA-associated cancers and respective metastatic sites.Authors: Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Maria José] Last name [Silveira]. Author 7 Given name: [Maria José] Last name [Oliveira]. Also, kindly confirm the details in the metadata are correctokAffiliations: Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.ok.


Assuntos
Neoplasias Colorretais , Nanopartículas , Anticorpos de Cadeia Única , Humanos , Antígeno Carcinoembrionário/metabolismo , Anticorpos de Cadeia Única/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias Colorretais/metabolismo , Nanopartículas/química
7.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430606

RESUMO

Actinidia arguta (Siebold & Zucc.) Planch. ex Miq. (kiwiberry) leaves are a source of phenolic compounds with pro-health biological effects, such as antioxidant and anti-inflammatory activities. Despite the huge number of studies reporting the composition of A. arguta leaves, no in vitro or in vivo studies explore its potential use as nutraceutical ingredient based on these activities. Therefore, this study aims to characterize the safety profile of kiwiberry leaf extracts using in vitro and in vivo approaches through the assessment of intestinal cell viability (Caco-2 and HT29-MTX), 3D intestinal permeation, and, most important, the redox markers, biochemical profile and liver and kidney function effects after the animal assays. Briefly, wistar rats were orally treated for 7 days with kiwiberry leaf extracts (50 and 75 mg/kg bw), water (negative control), or vitamin C (positive control). The cell viability was above 90% at 1000 µg/mL for both cells. Coumaroyl quinic acid and rutin achieved a permeation higher than 25% in the 3D intestinal model. The animal studies confirmed the extracts' ability to increase superoxide dismutase, glutathione peroxidase, and catalase content in animals' livers and kidneys while simultaneously decreasing the triglycerides content. This study highlighted the antioxidant capacity of kiwiberry leaf extracts, ensuring their efficacy and safety as a nutraceutical ingredient.


Assuntos
Antioxidantes , Extratos Vegetais , Ratos , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Células CACO-2 , Extratos Vegetais/química , Suplementos Nutricionais , Permeabilidade
8.
Prep Biochem Biotechnol ; 52(5): 578-589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34533419

RESUMO

This study aimed to better characterize a recently purified stable extracellular alkaline peptidase produced by Penicillium aurantiogriseum (URM 4622) through fluorescence spectroscopy, far-UV circular dichroism, kinetic and thermodynamic models to understand its' structure-activity and denaturation. Fluorescence data showed that changing pH leads to tryptophan residues exposure to more hydrophilic environments at optimum activity pH 9.0 and 10.0. When thermally treated, it displayed less unfolding at these pH values, along with 4-fold less photoproducts formation than at neutral pH. Different pH CD spectra showed more ß-sheet (21.5-43.0%) than α-helix (1-6.2%). At pH9.0, more than 2-fold higher α-helix content than any other pH. The melting temperature (Tm) was observed between 50 and 60 °C at all pH studied, with lower Tm at pH 9.0-11.0 (54.9-50.3 °C). The protease displayed two phase transition, with two energies of denaturation, and a 4-fold higher thermal stability (ΔH°m) than reports for other microorganism's proteases. An irreversible folding transition occurs between 50 and 60 °C. It displayed energies of denaturation suggesting higher thermal stability than reported for other microorganism's proteases. These results help elucidating the applicability of this new stable protease.


Assuntos
Peptídeo Hidrolases , Dobramento de Proteína , Dicroísmo Circular , Endopeptidases , Concentração de Íons de Hidrogênio , Penicillium , Desnaturação Proteica , Espectrometria de Fluorescência , Temperatura , Termodinâmica
9.
Biomacromolecules ; 22(2): 938-948, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33405910

RESUMO

Vaginal films featuring the pH-dependent release of tenofovir (TFV) were developed for the prevention of sexual transmission of human immunodeficiency syndrome (HIV). Films based on hydroxypropyl methylcellulose and zein were prepared incorporating different plasticizers [oleic acid, lactic acid, glycerol, and polyethylene glycol 400 (PEG)] and evaluated for in vitro drug release in an acidic simulated vaginal fluid (pH 4.2) and a slightly alkaline mixture of simulated seminal and vaginal fluids (pH 7.5). Results revealed that optimal biphasic TFV release was possible with proper combination of plasticizers (PEG and oleic acid, 1:7 w/w) and by adjusting the plasticizer/matrix-forming material ratio. The films had similar or higher levels of TFV associated with genital epithelial cells (Ca Ski or HEC-1-A cells) but lower drug permeability compared to the free drug. These data confirm that films have the potential to achieve suitable mucosal levels of TFV with low systemic exposure. The films developed could protect women from HIV sexual transmission.


Assuntos
Plastificantes , Zeína , Liberação Controlada de Fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Derivados da Hipromelose , Tenofovir
10.
Adv Exp Med Biol ; 1295: 223-242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33543462

RESUMO

Nanotechnology is a rapid-growing field with an extreme potential to revolutionize cancer treatments. However, despite the rapid advances, the clinical translation is still scarce. One of the main hurdles contributing for this setback is the lack of reliable in vitro models for preclinical testing capable of predicting the outcomes in an in vivo setting. In fact, the use of 2D monolayers, considered the gold-standard in vitro technique, leads to the creation of misleading data that might not be completely observed in in vivo or clinical setting. Thus, there is the need to use more complex models capable of better mimicking the tumor microenvironment. For that purpose, the development and use of multicellular tumor spheroids, three-dimensional (3D) cell cultures which recapitulate numerous aspects of the tumors, represents an advantageous approach to test the developed anticancer therapies. In this chapter, we identify and discuss the advantages of the use of these 3D cellular models compared to the 2D models and how they can be utilized to study nanoparticle-cancer cell interaction in a more reliable way to predict the treatment outcome in vivo.


Assuntos
Nanopartículas , Neoplasias , Comunicação Celular , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Esferoides Celulares , Microambiente Tumoral
11.
J Surg Oncol ; 121(5): 718-729, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31777095

RESUMO

BACKGROUND AND OBJECTIVES: The primary treatment for locally advanced cases of cervical cancer is chemoradiation followed by high-dose brachytherapy. When this treatment fails, pelvic exenteration (PE) is an option in some cases. This study aimed to develop recommendations for the best management of patients with cervical cancer undergoing salvage PE. METHODS: A questionnaire was administered to all members of the Brazilian Society of Surgical Oncology. Of them, 68 surgeons participated in the study and were divided into 10 working groups. A literature review of studies retrieved from the National Library of Medicine database was carried out on topics chosen by the participants. These topics were indications for curative and palliative PE, preoperative and intraoperative evaluation of tumor resectability, access routes and surgical techniques, PE classification, urinary, vaginal, intestinal, and pelvic floor reconstructions, and postoperative follow-up. To define the level of evidence and strength of each recommendation, an adapted version of the Infectious Diseases Society of America Health Service rating system was used. RESULTS: Most conducts and management strategies reviewed were strongly recommended by the participants. CONCLUSIONS: Guidelines outlining strategies for PE in the treatment of persistent or relapsed cervical cancer were developed and are based on the best evidence available in the literature.


Assuntos
Exenteração Pélvica/normas , Neoplasias do Colo do Útero/cirurgia , Anastomose Cirúrgica , Brasil , Colostomia/métodos , Diagnóstico por Imagem , Drenagem , Feminino , Humanos , Laparoscopia , Excisão de Linfonodo , Avaliação Nutricional , Estomia , Cuidados Paliativos , Diafragma da Pelve/cirurgia , Lavagem Peritoneal , Cuidados Pós-Operatórios , Cuidados Pré-Operatórios , Sociedades Médicas , Retalhos Cirúrgicos , Cateteres Urinários , Coletores de Urina , Vagina/cirurgia , Gravação em Vídeo
12.
Drug Dev Ind Pharm ; 46(2): 236-245, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928345

RESUMO

Nanoparticles based on gellan gum/pectin blends were designed for colon-targeted release of resveratrol (RES). Their impact on drug release rates and permeability were evaluated using Caco-2 cell model and mucus secreting triple co-culture model. Polymeric nanoparticles (PNP) were successfully prepared by nebulization/ionotropic gelation, achieving high drug loading (>80%). PNP were spherical with a low positive charge density (+5mV) and exhibited diameters of around 330 nm. Developed PNP were able to promote effective modulation of drug release rates, so that only 3% of RES was released in acidic media over 2 h, and, in pH 6.8, the drug was released in a sustained manner, reaching 85% in 30 h. The permeability of RES-loaded PNP in the Caco-2 model was 0.15%, while in the triple co-culture model, in the presence of mucus, it reached 5.5%. The everted gut sac experiment corroborated the low permeability of RES-loaded PNP in the presence or absence of mucus and highlighted their high ability to interact with the intestinal tissue. Results indicate that the novel PNP developed in this work are safe and promising carriers for controlled delivery of RES at the colon.


Assuntos
Colo/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Pectinas/química , Polissacarídeos Bacterianos/química , Resveratrol/administração & dosagem , Resveratrol/química , Administração Oral , Animais , Células CACO-2 , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células HT29 , Humanos , Concentração de Íons de Hidrogênio , Mucosa Intestinal/metabolismo , Masculino , Muco/metabolismo , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Wistar
13.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383645

RESUMO

Drug repurposing and drug combination are two strategies that have been widely used to overcome the traditional development of new anticancer drugs. Several FDA-approved drugs for other indications have been tested and have demonstrated beneficial anticancer effects. In this connection, our research group recently reported that Tacrine, used to treat Alzheimer's Disease, inhibits the growth of breast cancer MCF-7 cells both alone and in combination with a reference drug. In this view, we have now coupled Tacrine with the model amphipathic cell-penetrating peptide (CPP) MAP, to ascertain whether coupling of the CPP might enhance the drug's antiproliferative properties. To this end, we synthesized MAP through solid-phase peptide synthesis, coupled it with Tacrine, and made a comparative evaluation of the parent drug, peptide, and the conjugate regarding their permeability across the blood-brain barrier (BBB), ability to inhibit acetylcholinesterase (AChE) in vitro, and antiproliferative activity on cancer cells. Both MAP and its Tacrine conjugate were highly toxic to MCF-7 and SH-SY5Y cells. In turn, BBB-permeability studies were inconclusive, and conjugation to the CPP led to a considerable loss of Tacrine function as an AChE inhibitor. Nonetheless, this work reinforces the potential of repurposing Tacrine for cancer and enhances the antiproliferative activity of this drug through its conjugation to a CPP.


Assuntos
Antineoplásicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Tensoativos/química , Tensoativos/farmacologia , Tacrina/química , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Permeabilidade
14.
Pharm Dev Technol ; 25(1): 54-67, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31535923

RESUMO

This study aimed to prepare and characterize organogels containing microparticles of ascorbic acid (AA) obtained from propolis by-product. The formulations F1 (5% of microparticles) and F2 (10% of microparticles) were evaluated regarding rheological and textural properties, antioxidant and radical scavenging activity, in vitro release and cellular studies. The organogels showed plastic flow behavior and rheopexy. The textural parameters were within acceptable values for semisolid formulations. The antioxidant capacity of organogels F1 and F2 by the DPPH assay demonstrated IC50 ranging from 1523.59 to 1166.97 µg/mL, respectively. For the FRAP assay, the values found were 842.88 and 956.14 µmol of FSE/g formulation, respectively. Good scavenging activity against nitrogen species was observed. The concentration of 63 µg/mL did not present toxicity on HaCaT and HFF-1 cells. In vitro release profile of AA from organogels showed a slow pattern of drug release, mainly for F2. Therefore, the proposed organogel containing AA microparticles with propolis by-product matrix represents a promising platform for topical drug delivery with antioxidant effect.


Assuntos
Ácido Ascórbico/química , Géis/química , Própole/química , Antioxidantes/química , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Viscosidade/efeitos dos fármacos
15.
J Pharmacol Exp Ther ; 370(3): 657-670, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30670480

RESUMO

Colorectal cancer (CRC) is one of the most common causes of cancer-related death in the world, mainly owing to distant metastasis events. Developing targeted strategies to treat and follow individuals in more developed stages is needed. The carcinoembryonic antigen (CEA) is a cell surface-overexpressed glycoprotein in most CRC patients, and the evaluation of its serum levels is recommended in the clinic. These reasons motivated the production of CEA-targeted nanotechnologies for monitorization of CRC progression, but only a few centers have reported their use for drug delivery. The cellular internalization of CEA-linked nanosystems occurs by the natural recycling of the CEA itself, enabling longer retention and sustained release of the cargo. The functionalization of nanoparticles with lower affinity ligands for CEA is possibly the best choice to avoid their binding to the soluble CEA. Here, we also highlight the use of nanoparticles made of poly(lactic-co-glycolic acid) (PLGA) polymer, a well known material, owing to its biocompatibility and low toxicity. This work offers support to the contribution of antibody fragment-functionalized nanoparticles as promising high affinity molecules to decorate nanosystems. The linkers and conjugation chemistries chosen for ligand-nanoparticle coupling will be addressed herein as an elements essential to the modulation of nanosystem features. This review, to our knowledge, is the first that focuses on CEA-targeted nanotechnologies to serve colorectal cancer therapy and monitorization.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Antígeno Carcinoembrionário/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Animais , Humanos , Nanopartículas
16.
Org Biomol Chem ; 17(10): 2579-2593, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30648722

RESUMO

Photodynamic therapy (PDT) combines a photosensitizer (PS) with the physical energy of non-ionizing light to trigger cell death pathways. PDT has potential as a therapeutic modality to be used in alternative or in combination with other conventional cancer treatment protocols (e.g. surgery, chemotherapy and radiotherapy). Still, due to the lack of specificity of the current PSs to target the tumor cells, several studies have exploited their conjugation with targeting moieties. PSs conjugated with antibodies (Abs) or their fragments, able to bind antigens overexpressed in the tumors, have demonstrated potential in PDT of tumors. This review provides an overview of the most recent advances on photoimmunoconjugates (PICs) for cancer PDT, which involve the first and second-generation PSs conjugated to Abs. This is an update of our previous review "Antibodies armed with photosensitizers: from chemical synthesis to photobiological applications", published in 2015 in Org. Biomol. Chem.


Assuntos
Imunoconjugados/uso terapêutico , Neoplasias/terapia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Anticorpos Monoclonais/imunologia , Receptores ErbB/imunologia , Humanos , Imunoconjugados/imunologia , Luz , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Neoplasias/imunologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/efeitos da radiação
17.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974730

RESUMO

Polyphenolic compounds contained in cherry extract (CE) are well known for their antioxidant and anti-inflammatory properties. Unfortunately, most of these natural compounds have low oral bioavailability, reducing their widespread use. Here, different concentrations of polyphenol-rich CE from Tuscany (Italy), encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), were compared with those encapsulated in two NP types, different from each other in terms of mucoadhesivity, obtained with chitosan derivatives (Ch-der), regarding CE gastrointestinal (GI) permeability and protective effect on oxidative stress. Different NP systems were physico-chemically characterized, and the antioxidant GI permeability was evaluated in a triple-cell co-culture model (Caco-2/HT29-MTX/Raji B), resembling the intestine. PLGA NPs efficiently entrapped CE (up to 840 µg gallic acid equivalent (GAE)/mL) without altering size (210 nm), polydispersity index (0.05), or zeta potential (-10.7 mV). Such NPs promoted permeation of encapsulated CE at a CE polyphenolic concentration of at least 2 µg GAE/mL. More mucoadhesive NPs from Ch-der, coded quaternary ammonium S-protected thiolated chitosan (QA-Ch-S-pro) NP, promoted CE GI permeation of 0.5 µg GAE/mL. At higher concentrations of Ch-der polymers, the resulting NPs containing CE were toxic toward Caco-2 and HT29-MTX cells. CE protected human umbilical vein endothelial cells (HUVECs) from oxidative stress and maintained its activity when entrapped in PLGA NPs. CE encapsulated in QA-Ch-S-pro NP protected HUVECs from oxidative stress, even more effectively than non-encapsulated CE. Furthermore, mucoadhesive NPs from Ch-der were more effective antioxidant protectors than PLGA NPs, but less cytotoxic PLGA NPs could be more useful when comparatively high therapeutic antioxidant doses are needed.


Assuntos
Antioxidantes , Quitosana , Células Endoteliais da Veia Umbilical Humana/metabolismo , Nanopartículas/química , Extratos Vegetais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Prunus avium/química , Antioxidantes/química , Antioxidantes/farmacologia , Células CACO-2 , Quitosana/química , Quitosana/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia
18.
J Sci Food Agric ; 99(10): 4686-4694, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30908633

RESUMO

BACKGROUND: The development of functional and nutraceutical foods comes from a greater awareness of the relationship between food and health by consumers. In recent years, the idea of purifying and encapsulating bioactive compounds through techniques such as spray drying has been well received by the food industry. The development and characterization of a grapefruit (Citrus paradisi) nutraceutical powder obtained by spray drying is of great interest owing to the different bioactive compounds and the potential health effects. RESULTS: The grapefruit powder was characterized by a low water amount (1.5 g water per 100 g powder) and a high porosity (75%). The color parameters were L* = 80.0 ± 1.8, hab * = 61.7 ± 0.4 and Cab * = 11.4 ± 0.6. The IC50 values determined for the freeze-dried oxalic acid extract (FDOA) and the freeze-dried methanol-water extract (FDMW) were 0.48 and 0.72 mg mL-1 respectively, while the total phenolic content (TPC) ranged between 1274 and 1294 mg gallic acid equivalent (GAE) per 100 g dry basis (d.b.). Regarding total flavonoid content (TFC), FDOA presented the highest amount (6592 mg quercetin equivalent (QE) per 100 g d.b.). For both extracts, the cell viability in Caco-2 and HT29-MTX was above 90% at 100 µg mL-1 . The bioavailability of the bioactive compounds was analyzed through a 3D intestinal model. Delphenidin-3-glucoside and hesperitin-7-O-glucoside presented a permeation higher than 50%, followed by hesperidin which was close to 30%. CONCLUSION: This work allows to establish that the formulation of grapefruit powder has great potential as a nutraceutical food, with spray drying being a good alternative technique in the food industry. © 2019 Society of Chemical Industry.


Assuntos
Citrus paradisi/química , Suplementos Nutricionais/análise , Manipulação de Alimentos/métodos , Liofilização/métodos , Mucosa Intestinal/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Células CACO-2 , Permeabilidade da Membrana Celular , Manipulação de Alimentos/instrumentação , Liofilização/instrumentação , Células HT29 , Humanos , Permeabilidade , Pós/química , Pós/metabolismo
19.
Small ; 14(27): e1800462, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29855134

RESUMO

The last decade has seen remarkable advances in the development of drug delivery systems as alternative to parenteral injection-based delivery of insulin. Neonatal Fc receptor (FcRn)-mediated transcytosis has been recently proposed as a strategy to increase the transport of drugs across the intestinal epithelium. FcRn-targeted nanoparticles (NPs) could hijack the FcRn transcytotic pathway and cross the epithelial cell layer. In this study, a novel nanoparticulate system for insulin delivery based on porous silicon NPs is proposed. After surface conjugation with albumin and loading with insulin, the NPs are encapsulated into a pH-responsive polymeric particle by nanoprecipitation. The developed NP formulation shows controlled size and homogeneous size distribution. Transmission electron microscopy (TEM) images show successful encapsulation of the NPs into pH-sensitive polymeric particles. No insulin release is detected at acidic conditions, but a controlled release profile is observed at intestinal pH. Toxicity studies show high compatibility of the NPs with intestinal cells. In vitro insulin permeation across the intestinal epithelium shows approximately fivefold increase when insulin is loaded into FcRn-targeted NPs. Overall, these FcRn-targeted NPs offer a toolbox in the development of targeted therapies for oral delivery of insulin.


Assuntos
Albuminas/química , Antígenos de Histocompatibilidade Classe I/química , Insulina/química , Nanopartículas/química , Polímeros/química , Receptores Fc/química , Silício/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Porosidade
20.
Bioconjug Chem ; 29(5): 1677-1689, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29635917

RESUMO

The uptake and transport of dietary antioxidants remains the most important setback for their application in therapy. To overcome the limitations, a PEGylated-based platform was developed to improve the delivery properties of two dietary hydroxycinnamic (HCA) antioxidants-caffeic and ferulic acids. The antioxidant properties of the new polymer-antioxidant conjugates (PEGAntiOxs), prepared by linking poly(ethylene glycol) (PEG) to the cinnamic acids by a one-step Knovenagel condensation reaction, were evaluated. PEGAntiOxs present a higher lipophilicity than the parent compounds (caffeic and ferulic acids) and similar, or higher, antioxidant properties. PEGAntiOxs were not cytotoxic at the tested concentrations in SH-SY5Y, Caco-2, and hCMEC/D3 cells. By contrast, cytotoxic effects in hCMEC/D3 and SH-SY5Y cells were observed, at 50 and 100 µM, for caffeic and ferulic acids. PEGAntiOxs operate as antioxidants against several oxidative stress-cellular inducers in a neuronal cell-based model, and were able to inhibit glycoprotein-P in Caco-2 cells. PEGAntiOxs can cross hCMEC/D3 monolayer cells, a model of the blood-brain barrier (BBB) endothelial membrane. In summary, PEGAntiOxs are valid antioxidant prototypes that can uphold the antioxidant properties of HCAs, reduce their cytotoxicity, and improve their BBB permeability. PEGAntiOxs can be used in the near future as drug candidates to prevent or slow oxidative stress associated with neurodegenerative diseases.


Assuntos
Antioxidantes/farmacologia , Antioxidantes/farmacocinética , Barreira Hematoencefálica/metabolismo , Cinamatos/farmacologia , Cinamatos/farmacocinética , Polietilenoglicóis/farmacologia , Polietilenoglicóis/farmacocinética , Antioxidantes/química , Células CACO-2 , Permeabilidade Capilar , Linhagem Celular , Cinamatos/química , Humanos , Estresse Oxidativo/efeitos dos fármacos , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA