Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Am Chem Soc ; 144(31): 14363-14379, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35913703

RESUMO

In a three-dimensional (3D) representation, each protein molecule displays a specific pattern of chemical and topological features, which are altered during its misfolding and aggregation pathway. Generating a recognizable fingerprint from such features could provide an enticing approach not only to identify these biomolecules but also to gain clues regarding their folding state and the occurrence of pathologically lethal misfolded aggregates. We report here a universal strategy to generate a fluorescent fingerprint from biomolecules by employing the pan-selective molecular recognition feature of a cucurbit[7]uril (CB[7]) macrocyclic receptor. We implemented a direct sensing strategy by covalently tethering CB[7] with a library of fluorescent reporters. When CB[7] recognizes the chemical and geometrical features of a biomolecule, it brings the tethered fluorophore into the vicinity, concomitantly reporting the nature of its binding microenvironment through a change in their optical signature. The photophysical properties of the fluorophores allow a multitude of probing modes, while their structural features provide additional binding diversity, generating a distinct fluorescence fingerprint from the biomolecule. We first used this strategy to rapidly discriminate a diverse range of protein analytes. The macrocyclic sensor was then applied to probe conformational changes in the protein structure and identify the formation of oligomeric and fibrillar species from misfolded proteins. Notably, the sensor system allowed us to differentiate between different self-assembled forms of the disease-specific amyloid-ß (Aß) aggregates and segregated them from other generic amyloid structures with a 100% identification accuracy. Ultimately, this sensor system predicted clinically relevant changes by fingerprinting serum samples from a cohort of pregnant women.


Assuntos
Peptídeos beta-Amiloides , Hidrocarbonetos Aromáticos com Pontes , Amiloide , Peptídeos beta-Amiloides/química , Hidrocarbonetos Aromáticos com Pontes/química , Feminino , Corantes Fluorescentes/química , Compostos Heterocíclicos com 2 Anéis , Humanos , Imidazóis/química , Imidazolidinas , Compostos Macrocíclicos , Gravidez
2.
Nucleic Acids Res ; 48(6): e32, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31974573

RESUMO

In neurons, the specific spatial and temporal localization of protein synthesis is of great importance for function and survival. Here, we visualized tRNA and protein synthesis events in fixed and live mouse primary cortical culture using fluorescently-labeled tRNAs. We were able to characterize the distribution and transport of tRNAs in different neuronal sub-compartments and to study their association with the ribosome. We found that tRNA mobility in neural processes is lower than in somata and corresponds to patterns of slow transport mechanisms, and that larger tRNA puncta co-localize with translational machinery components and are likely the functional fraction. Furthermore, chemical induction of long-term potentiation (LTP) in culture revealed up-regulation of mRNA translation with a similar effect in dendrites and somata, which appeared to be GluR-dependent 6 h post-activation. Importantly, measurement of protein synthesis in neurons with high resolutions offers new insights into neuronal function in health and disease states.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Neurônios/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Animais , Compartimento Celular , Células Cultivadas , Dendritos/metabolismo , Corantes Fluorescentes/metabolismo , Potenciação de Longa Duração , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
3.
Angew Chem Int Ed Engl ; 60(33): 18209-18216, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111324

RESUMO

Synthesis of supramolecular block co-polymers (BCP) with small monomers and predictive sequence requires elegant molecular design and synthetic strategies. Herein we report the unparalleled synthesis of tri-component supramolecular BCPs with tunable microstructure by a kinetically controlled sequential seeded supramolecular polymerization of fluorescent π-conjugated monomers. Core-substituted naphthalene diimide (cNDI) derivatives with different core substitutions and appended with ß-sheet forming peptide side chains provide perfect monomer design with spectral complementarity, pathway complexity and minimal structural mismatch to synthesize and characterize the multi-component BCPs. The distinct fluorescent nature of various cNDI monomers aids the spectroscopic probing of the seeded growth process and the microscopic visualization of resultant supramolecular BCPs using Structured Illumination Microscopy (SIM). Kinetically controlled sequential seeded supramolecular polymerization presented here is reminiscent of the multi-step synthesis of covalent BCPs via living chain polymerization. These findings provide a promising platform for constructing unique functional organic heterostructures for various optoelectronic and catalytic applications.

4.
J Am Chem Soc ; 142(16): 7606-7617, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32233467

RESUMO

Multicomponent supramolecular copolymerization promises to construct complex nanostructures with emergent properties. However, even with two monomeric components, various possible outcomes such as self-sorted supramolecular homopolymers, a random (statistical) supramolecular copolymer, an alternate supramolecular copolymer, or a complex supramolecular block copolymer can occur, determined by their intermolecular interactions and monomer exchange dynamics and hence structural prediction is extremely challenging. Herein, we target this challenge and demonstrate unprecedented two-component sequence controlled supramolecular copolymerization by manipulating thermodynamic and kinetic routes in the pathway complexity of self-assembly of the constitutive monomers. Extensive molecular dynamics simulations provided useful mechanistic insights into the monomer exchange rates and free energy of interactions between the monomers that dictate the self-assembly pathway and sequence. The fluorescent nature of core-substituted naphthalene diimide monomers has been further utilized to characterize the three sequences via Structured Illumination Microscopy (SIM).

5.
J Am Chem Soc ; 142(26): 11528-11539, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32501694

RESUMO

Supramolecular block copolymerzation with optically or electronically complementary monomers provides an attractive bottom-up approach for the non-covalent synthesis of nascent axial organic heterostructures, which promises to deliver useful applications in energy conversion, optoelectronics, and catalysis. However, the synthesis of supramolecular block copolymers (BCPs) constitutes a significant challenge due to the exchange dynamics of non-covalently bound monomers and hence requires fine microstructure control. Furthermore, temporal stability of the segmented microstructure is a prerequisite to explore the applications of functional supramolecular BCPs. Herein, we report the cooperative supramolecular block copolymerization of fluorescent monomers in solution under thermodynamic control for the synthesis of axial organic heterostructures with light-harvesting properties. The fluorescent nature of the core-substituted naphthalene diimide (cNDI) monomers enables a detailed spectroscopic probing during the supramolecular block copolymerization process to unravel a nucleation-growth mechanism, similar to that of chain copolymerization for covalent block copolymers. Structured illumination microscopy (SIM) imaging of BCP chains characterizes the segmented microstructure and also allows size distribution analysis to reveal the narrow polydispersity (polydispersity index (PDI) ≈ 1.1) for the individual block segments. Spectrally resolved fluorescence microscopy on single block copolymerized organic heterostructures shows energy migration and light-harvesting across the interfaces of linearly connected segments. Molecular dynamics and metadynamics simulations provide useful mechanistic insights into the free energy of interaction between the monomers as well as into monomer exchange mechanisms and dynamics, which have a crucial impact on determining the copolymer microstructure. Our comprehensive spectroscopic, microscopic, and computational analyses provide an unambiguous structural, dynamic, and functional characterization of the supramolecular BCPs. The strategy presented here is expected to pave the way for the synthesis of multi-component organic heterostructures for various functions.

6.
Angew Chem Int Ed Engl ; 59(31): 13093-13100, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32374512

RESUMO

Two-dimensional (2D) lead-free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in-depth understanding on their shape-controlled charge-carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single-particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3 Bi2 I6 Cl3 , by solution-based method. We applied fluorescence microscopy and super-resolution optical imaging at single-particle level to investigate their morphology-dependent PL properties. Narrow emission line widths and passivation of non-radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super-resolution optical image of the NS from localization-based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.

7.
Angew Chem Int Ed Engl ; 58(15): 5008-5012, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30741500

RESUMO

A solvent responsive dynamic nanoscale metal-organic framework (NMOF) [Zn(1 a)(H2 O)2 ] has been devised based on the self-assembly of ZnII and asymmetric bola-amphiphilic oligo-(p-phenyleneethynylene) (OPE) dicarboxylate linker 1 a having dodecyl and triethyleneglycolmonomethylether (TEG, polar) side chains. In THF solvent, NMOF showed nanovesicular morphology (NMOF-1) with surface decorated dodecyl chains. In water and methanol, NMOF exhibited inverse-nanovesicle (NMOF-2) and nanoscroll (NMOF-3) morphology, respectively, with surface projected TEG chains. The pre-formed NMOFs also unveiled reversible solvent responsive transformation of different morphologies. The flexible NMOF showed cyan emission and no cytotoxicity, allowing live cell imaging. Cisplatin (14.4 wt %) and doxorubicin (4.1 wt %) were encapsulated in NMOF-1 by non-covalent interactions and, in vitro and in vivo drug release was studied. The drug loaded NMOFs exhibited micromolar cytotoxicity.


Assuntos
Sistemas de Liberação de Medicamentos , Furanos/química , Estruturas Metalorgânicas/química , Imagem Óptica , Termodinâmica , Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/química , Cisplatino/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células HeLa , Humanos , Estruturas Metalorgânicas/síntese química , Solventes/química
8.
Anal Chem ; 90(19): 11305-11314, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30148612

RESUMO

Bioorthogonal strategies are continuing to pave the way for new analytical tools in biology. Although a significant amount of progress has been made in developing covalent reaction based bioorthogonal strategies, balanced reactivity, and stability are often difficult to achieve from these systems. Alternatively, despite being kinetically beneficial, the development of noncovalent approaches that utilize fully synthetic and stable components remains challenging due to the lack of selectivity in conventional noncovalent interactions in the living cellular environment. Herein, we introduce a bioorthogonal assembly strategy based on a synthetic host-guest system featuring Cucurbit[7]uril (CB[7]) and adamantylamine (ADA). We demonstrate that highly selective and ultrastable host-guest interaction between CB[7] and ADA provides a noncovalent mechanism for assembling labeling agents, such as fluorophores and DNA, in cells and tissues for bioorthogonal imaging of molecular targets. Additionally, by combining with covalent reaction, we show that this CB[7]-ADA based noncovalent interaction enables simultaneous bioorthogonal labeling and multiplexed imaging in cells as well as tissue sections. Finally, we show that interaction between CB[7] and ADA fulfills the demands of specificity and stability that is required for assembling molecules in the complexities of a living cell. We demonstrate this by sensitive detection of metastatic cancer-associated cell surface protein marker as well as by showing the distribution and dynamics of F-actin in living cells.


Assuntos
Amantadina/química , Amantadina/metabolismo , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Imagem Molecular , Coloração e Rotulagem/métodos , DNA/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Conformação Molecular , Fatores de Tempo
9.
Langmuir ; 34(2): 693-699, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29262683

RESUMO

Colloidal microcapsules based on supramolecular architectures feature attractive properties and offer new opportunities in diverse areas such as delivery, sensing, and catalysis. Herein, we report a new strategy to fabricate the colloidal membrane and stimuli-responsive microcapsules by utilizing cucurbit[7]uril-mediated interfacial host-guest molecular recognition. In contrast to the traditionally used cross-linking approach, this method exploits the engineered interaction between a nanoparticle ligand and cucurbit[7]uril to tune the interfacial energy and stabilize the colloidal assembly at the interface. These capsules provide a versatile platform for simultaneous encapsulation of dual cargos. Additionally, the dynamic nature of the supramolecular interactions allows triggered release of the encapsulated cargos through the orthogonal presentation of a high affinity guest molecule.

10.
Inorg Chem ; 57(24): 15558-15565, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30475604

RESUMO

The discovery of new two-dimensional (2D) perovskite halides has created sensation recently because of their structural diversity and intriguing optical properties. The toxicity of Pb-based perovskite halides led to the development of Pb-free halides. Herein, we have demonstrated a one-pot solution-based synthesis of 2D ultrathin (∼1.78 nm) few-layer (2-4 layers) nanoplates (300-600 nm lateral dimension), nanosheets (0.6-1.5 µm), and nanocrystals of layered Cs3Bi2I9 by varying the reaction temperature from 110 to 180 °C. We have established a mechanistic pathway for the variation of morphology of Cs3Bi2I9 with temperature in the presence of organic capping ligands. Further, we have synthesized the bulk powder of Cs3Bi2I9 by mechanochemical synthesis and liquid-assisted grinding and crystalline ingot by vacuum-sealed tube melting. 2D nanoplates and bulk Cs3Bi2I9 demonstrate optical absorption edge along with excitonic transition. Photoluminescence properties of individual nanoplates were studied by super-resolution fluorescence imaging, which indicated the blinking behavior down to the level of an individual Cs3Bi2I9 nanoplate along with its emission at the far-red region and high photostability.

11.
Chem Sci ; 14(26): 7161-7169, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37416708

RESUMO

Lead (Pb)-free layered double perovskites (LDPs) with exciting optical properties and environmental stability have sparked attention in optoelectronics, but their high photoluminescence (PL) quantum yield and understanding of the PL blinking phenomenon at the single particle level are still elusive. Herein, we not only demonstrate a hot-injection route for the synthesis of two-dimensional (2D) ∼2-3 layer thick nanosheets (NSs) of LDP, Cs4CdBi2Cl12 (pristine), and its partially Mn-substituted analogue [i.e., Cs4Cd0.6Mn0.4Bi2Cl12 (Mn-substituted)], but also present a solvent-free mechanochemical synthesis of these samples as bulk powders. Bright and intense orange emission has been perceived for partially Mn-substituted 2D NSs with a relatively high PL quantum yield (PLQY) of ∼21%. The PL and lifetime measurements both at cryogenic (77 K) and room temperatures were employed to understand the de-excitation pathways of charge carriers. With the implementation of super-resolved fluorescence microscopy and time-resolved single particle tracking, we identified the occurrence of metastable non-radiative recombination channels in a single NS. In contrast to the rapid photo-bleaching that resulted in a PL blinking-like nature of the controlled pristine NS, the 2D NS of the Mn-substituted sample displayed negligible photo-bleaching with suppression of PL fluctuation under continuous illumination. The blinking-like nature in pristine NSs appeared due to a dynamic equilibrium flanked by the active and in-active states of metastable non-radiative channels. However, the partial substitution of Mn2+ stabilized the in-active state of the non-radiative channels, which increased the PLQY and suppressed PL fluctuation and photo-bleaching events in Mn-substituted NSs.

12.
Chem Commun (Camb) ; 57(32): 3937-3940, 2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33871492

RESUMO

Synthesis of supramolecular block copolymers (BCPs) from small monomers has been recently attempted. However, the lack of dispersity and length control of the blocky segments limits its functional outcome. Herein we demonstrate the synthesis of well-defined supramolecular BCPs with tunable block lengths by varying the monomer to seed ratio in a kinetically controlled seeded supramolecular polymerization process. Structured Illumination microscopy (SIM) and spectroscopic analyses provide structural characterization of these supramolecular BCPs, which offers various possibilities as axial organic heterostructures.

13.
Chem Sci ; 12(15): 5484-5494, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-34163769

RESUMO

Modern chemical and biological studies are undergoing a paradigm shift, where understanding the fate of individual cells, in an apparently homogeneous population, is becoming increasingly important. This has inculcated a growing demand for developing strategies that label individual cells with unique fluorescent signatures or barcodes so that their spatiotemporal trajectories can be mapped in real time. Among various approaches, light-regulated methods employing photocaged fluorophores have received particular attention, owing to their fine spatiotemporal control over labelling. However, their multiplexed use to barcode large numbers of cells for interrogating cellular libraries or complex tissues remains inherently challenging, due to the lack of multiple spectrally distinct photoactivated states in the currently available photocaged fluorophores. We report here an alternative multiplexable strategy based on optically controlled host-guest recognition in the cucurbit[7]uril (CB[7]) system that provides spatial control over the positioning of fluorophores to generate distinct barcodes in 'user-defined' cells. Using a combination of three spectrally distinct CB[7]-conjugated fluorophores and by sequentially performing cycles of photoactivation and fluorophore encoding, we demonstrate 10-color barcoding in microtubule-targeted fixed cells as well as 7-color barcoding in cell surface glycan targeted live MCF7 cells.

14.
Nat Commun ; 11(1): 3967, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770122

RESUMO

Temporally controlled cooperative and living supramolecular polymerization by the buffered release of monomers has been recently introduced as an important concept towards obtaining monodisperse and multicomponent self-assembled materials. In synthetic, dynamic supramolecular polymers, this requires efficient design strategies for the dormant, inactive states of the monomers to kinetically retard the otherwise spontaneous nucleation process. However, a generalized design principle for the dormant monomer states to expand the scope of precision supramolecular polymers has not been established yet, due to the enormous differences in the mechanism, energetic parameters of self-assembly and monomer exchange dynamics of the diverse class of supramolecular polymers. Here we report the concept of transient dormant states of monomers generated by redox reactions as a predictive general design to achieve monodisperse supramolecular polymers of electronically active, chromophoric or donor-acceptor, monomers. The concept has been demonstrated with charge-transfer supramolecular polymers with an alternating donor-acceptor sequence.

15.
Nanoscale ; 12(36): 18692-18700, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32970093

RESUMO

Self-sorting is a spontaneous phenomenon that ensures the formation of complex yet ordered multicomponent systems and conceptualizes the design of artificial and orthogonally functional compartments. In the present study, we envisage chirality-mediated self-sorting in ß-amyloid-inspired minimalistic peptide amphiphile (C10-l/d-VFFAKK)-based nanofibers. The fidelity and stereoselectivity of chiral self-sorting was ascertained by Förster resonance energy transfer (FRET) by the judicious choice of a pyrene (Py)-hydroxy coumarin (HOCou) donor-acceptor pair tethered to the peptide sequences. Seed-promoted elongation of the homochiral peptide amphiphiles investigated by AFM image analyses and Thioflavin-T (ThT) binding study further validated the chiral recognition of the l/d peptide nanofibers. Moreover, direct visualization of the chirality-driven self-sorted nanofibers is reported using super-resolution microscopy that exhibits enantioselective enzymatic degradation for l-peptide fibers. Such enantioselective weakening of the hydrogels may be used for designing stimuli-responsive orthogonal compartments for delivery applications.


Assuntos
Nanofibras , Peptídeos , Sequência de Aminoácidos , Amiloide , Hidrogéis
16.
ChemistryOpen ; 9(3): 346-350, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195075

RESUMO

The pH-responsive nature of two self-assembled NDI-peptide amphiphile conjugates is reported. The diethoxy substituted NDI showed a pH-dependent assembly behaviour, as expected. In contrast, the isopropylamino- and ethoxy-substituted NDI based supramolecular polymer was stable at acidic and basic aqueous conditions. This finding highlights how subtle changes in the molecular design of π-stacked chromophore-peptide conjugates have a drastic impact on their equilibrium structure and ultimately functional properties.

17.
Curr Biol ; 30(12): 2395-2403.e4, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32442461

RESUMO

Centrioles are essential components of centrosome, the main microtubule-organizing center of animal cells required for robust spindle bipolarity [1, 2]. They are duplicated once during the cell cycle [3], and the duplication involves assembly of a cartwheel on the pre-existing centriole followed by assembly of triplet microtubules around the cartwheel [4, 5]. Although the molecular details of cartwheel formation are understood [6-13], the mechanisms initiating the formation of centriolar microtubules are not known. Here, we show that the central component of cartwheel, HsSAS-6 plays a crucial role in the formation of centriolar microtubules by interacting with the microtubule nucleation machinery, γ-tubulin ring complex (γ-TuRC) in human cells. The globular N terminus and the central coiled-coil domain of SAS-6 are required for formation of the cartwheel [7, 14], whereas the function of its C-terminal outer cartwheel region in centriole duplication remains unclear. We find that deletion of HsSAS-6 C terminus disrupts microtubule formation in daughter centriole, and as a result, cells fail to form the new centriole. Consequently, this results in mitotic cells having only two centrioles localized at a single site. Detailed molecular analyses showed that HsSAS-6 interacts with the γ-TuRC proteins and associates with the γ-TuRC at the centrosome, and furthermore, the C terminus is essential for this association. High-resolution microscopy revealed localization of the γ-TuRC protein, γ-tubulin as multiple lobes surrounding the HsSAS-6-containing central hub in the centriole. Together, the results indicate that HsSAS-6 regulates centriolar microtubule assembly by anchoring γ-TuRCs to the pro-centriole at the onset of daughter centriole formation.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Biogênese de Organelas , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo
18.
Chem Commun (Camb) ; 55(96): 14430-14433, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31737873

RESUMO

Synthetic host-guest complexes are inherently dynamic as they employ weak and reversible noncovalent interactions for their recognition processes. We strategically exploited dynamic supramolecular recognition between fluorescently labeled guest molecules to complementary cucurbit[7]uril hosts to obtain stochastic switching between fluorescence ON- and OFF-states, enabling PAINT-based nanoscopic imaging in cells and tissues.

19.
ACS Sens ; 4(12): 3124-3132, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31763818

RESUMO

Cells at disease onset are often associated with subtle changes in the expression level of a single or few molecular components, making traditionally used biomarker-driven clinical diagnosis a challenging task. We demonstrate here the design of a DNA nanosensor array with multichannel output that identifies the normal or pathological state of a cell based on the alteration of its global proteomic signature. Fluorophore-encoded single-stranded DNA (ssDNA) strands were coupled via supramolecular interaction with a surface-functionalized gold nanoparticle quencher to generate this integrated sensor array. In this design, ssDNA sequences exhibit dual roles, where they provide differential affinities with the receptor gold nanoparticle as well as act as transducer elements. The unique interaction mode of the analyte molecules disrupts the noncovalent supramolecular complexation, generating simultaneous multichannel fluorescence output to enable signature-based analyte identification via a linear discriminant analysis-based machine learning algorithm. Different cell types, particularly normal and cancerous cells, were effectively distinguished using their fluorescent fingerprints. Additionally, this DNA sensor array displayed excellent sensitivity to identify cellular alterations associated with chemical modulation of catabolic processes. Importantly, pharmacological effectors, which could modulate autophagic flux, have been effectively distinguished by generating responses from their global protein signatures. Taken together, these studies demonstrate that our multichannel DNA nanosensor is well suited for rapid identification of subtle changes in a complex mixture and thus can be readily expanded for point-of-care clinical diagnosis, high-throughput drug screening, or predicting the therapeutic outcome from a limited sample volume.


Assuntos
Técnicas Citológicas/métodos , DNA de Cadeia Simples/química , Proteínas/análise , Espectrometria de Fluorescência/métodos , Autofagia/efeitos dos fármacos , Carbocianinas/química , Linhagem Celular Tumoral , Análise Discriminante , Fluoresceínas/química , Corantes Fluorescentes/química , Ouro/química , Células HEK293 , Humanos , Aprendizado de Máquina , Nanopartículas Metálicas/química , Proteínas/química , Rodaminas/química
20.
J Mater Chem B ; 6(44): 7329-7334, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-32226626

RESUMO

The positive outcome of any therapeutic molecule requires control over its delivery rate. When delivered without control, administration of large doses is required to stimulate a therapeutic effect, frequently leading to increased toxicity or undesirable side effects. Recent advances introduced "smart" materials that actively release drugs in response to environmental stimuli. Although a variety of endogenous and exogenous triggers are reported, they are either difficult to control or lack tissue penetration depth. We report here a dynamic drug delivery scaffold based on a cucurbit[7]uril (CB[7]) host and benzylammonium functionalized gold nanoparticle (AuNP) guest that utilizes a bioorthogonal small molecule to achieve therapeutic control. In addition to their ability to reach deep tissue, small molecule activation is benefitted by their external controllability. Through cell culture studies we demonstrate that the host-guest supramolecular scaffold provides a nontoxic platform that effectively encapsulates a variety of therapeutic molecules and controls the payload release upon exposure to a high-affinity competitive guest molecule. This study presents a new strategy for controlling drug release rate through the use of competitive interactions of orthogonally presented guest molecules with immediate advantages in dosage control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA