Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 159(24)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153153

RESUMO

We investigated collision induced transitions in the (0, 0) band of the A2Σ+-X2Π electronic transition of nitric oxide (NO) using two-color polarization spectroscopy (TCPS). Two sets of TCPS spectra for 1% NO, diluted in different buffer gases at 295 K and 1 atm, were obtained with the pump beam tuned to the R11(11.5) and OP12(1.5) transitions. The buffer gases were He, Ar, and N2. The probe was scanned while the pump beam was tuned to the line center. Theoretical TCPS spectra, calculated by solving the density matrix formulation of the time-dependent Schrödinger wave equation, were compared with the experimental spectra. A collision model based on the modified exponential-gap law was used to model the rotational level-to-rotational level collision dynamics. A model for collisional transfer from an initial to a final Zeeman state was developed based on the difference in cosine of the rotational quantum number J projection angle with the z-axis for the two Zeeman states. Rotational energy transfer rates and Zeeman state collisional dynamics were varied to obtain good agreement between theory and experiment for the two different TCPS pump transitions and for the three different buffer gases. One key finding, in agreement with quasi-classical trajectory calculations, is that the spin-rotation changing transition rate in the A2Σ+ level of NO is almost zero for rotational quantum numbers ≥8. It was necessary to set this rate to near zero to obtain agreement with the TCPS spectra.

2.
Opt Express ; 27(23): 33954-33966, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878454

RESUMO

The effects of self-phase modulation (SPM) on the power spectra of femtosecond (fs) pulses and the consequent impact on N2 chirped-probe-pulse (CPP) fs coherent anti-Stokes Raman scattering (CARS) spectra are discussed in this paper. We investigated the pressure dependence of CPP fs CARS for N2 in a room-temperature gas cell at pressures ranging from 1 to 10 bar, and in our initial experiments the CPP fs CARS spectrum changed drastically as the pressure increased. We found that the spectra of the near-Fourier-transform-limited, 60-fs pump and Stokes pulses at the exit of the gas cell changed drastically as the pressure increased due to self-phase-modulation (SPM). This effect was examined in detail in further experiments where the pulse energies of the pump and Stokes pulses were controlled using a combination of a half-wave plate and a linear polarizer. Along with the generated CARS spectrum, the spectra of pump and Stokes pulses were measured at the entrance and exit of the gas cell. The extent of SPM effects for a particular spectrum was characterized by the least squares difference between that spectrum and a spectrum recorded at low enough pressure and laser intensities that SPM was negligible. SPM effects were investigated for N2, O2, CO2, and CH4, for pressures ranging from 1 to 10 bar, and for pump and Stokes pulse energies ranging from 10 to 60 µJ. We found that SPM effects in N2 were much weaker than for O2, CO2 and CH4.

3.
Appl Opt ; 58(16): 4320-4325, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251236

RESUMO

An improved understanding of energy localization ("hot spots") is needed to improve the safety and performance of explosives. We propose a technique to visualize and quantify the properties of a dynamic hot spot from within an energetic composite subjected to ultrasonic mechanical excitation. The composite is composed of an optically transparent binder and a countable number of octahydro 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals. The evolving temperature field is measured by observing the luminescence from embedded phosphor particles and subsequent application of the intensity ratio method. The spatial temperature precision is less than 2% of the measured absolute temperature in the temperature regime of interest (23°C-220°C). The temperature field is mapped from within an HMX-binder composite under periodic mechanical excitation.

4.
Opt Lett ; 43(3): 443-446, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400810

RESUMO

We have employed, to the best of our knowledge, a novel excitation scheme to perform the first high-repetition-rate planar laser-induced fluorescence (PLIF) measurements of a CN radical in combustion. The third harmonic of a Nd:YVO4 laser at 355 nm due to its relatively large linewidth overlaps with several R branch transitions in a CN ground electronic state. Therefore, the 355 nm beam was employed to directly excite the CN transitions with good efficiency. The CN measurements were performed in premixed CH4-N2O flames with varying equivalence ratios. A detailed characterization of the high-speed CN PLIF imaging system is presented via its ability to capture statistical and dynamical information in these premixed flames. Single-shot CN PLIF images obtained over a HMX pellet undergoing self-supported deflagration are presented as an example of the imaging system being applied towards characterizing the flame structure of energetic materials.

5.
Appl Opt ; 56(31): 8797-8810, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091695

RESUMO

This work characterizes the state of the art in the analysis of high-repetition-rate, ultrafast combustion thermometry using chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs-CARS). Several key aspects of the CARS spectroscopy system are described, including: (1) the ultrafast laser source, (2) use of the frequency-doubled idler versus signal from the optical parametric amplifier, (3) the geometry constraints for phase matching, and (4) spectral fitting for single-shot temperature measurements. A frequency-dependent instrument response function (IRF) for the detection system was modeled as a variable-width Gaussian and implemented through a frequency convolution of synthetic spectra. Proper accounting of the IRF increased spectral fitting performance in the high-frequency region where signal oscillations are weaker and narrower. Aggregated data from 25 system performance assessments taken over four months yielded accuracy and precision of 2.7% and ±3.5% for flame temperatures, and 9.9% and ±6.1% at room temperature, using the commonly reported method. A new processing technique, based on the statistical method of maximum likelihood, was implemented for turbulent flames where strong fluctuations in expected temperatures necessitate use of multiple temperature calibrations. Results from multiple sets of laser parameters are combined to generate an error-weighted temperature from the top-performing calibrations. A testing procedure was designed to characterize system performance when the range of expected temperatures is unknown, simulating the random temperature field of a highly turbulent flame. Accuracy error of the CPP fs-CARS system increased in this more-stressing test at all temperatures, but precision was significantly affected only at room temperature. System stability is characterized, and the contribution from shot-to-shot laser fluctuations on measurement precision is quantified. Finally, the near-adiabatic and steady assumptions for the Hencken burner calibration flame are examined in an axial scan; significant deviations from ideal behavior were observed only at heights of more than four diameters above the burner surface.

6.
Appl Opt ; 53(3): 316-26, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24514114

RESUMO

Imaging dynamic multiphase combusting events is challenging. Conventional techniques can image only a single plane of an event, capturing limited details. Here, we report on a three-dimensional, time-resolved, OH planar laser-induced fluorescence (3D OH PLIF) technique that was developed to measure the relative OH concentration in multiphase combustion flow fields. To the best of our knowledge, this is the first time a 3D OH PLIF technique has been reported in the open literature. The technique involves rapidly scanning a laser sheet across a flow field of interest. The overall experimental system consists of a 5 kHz OH PLIF system, a high-speed detection system (image intensifier and CMOS camera), and a galvanometric scanning mirror. The scanning mirror was synchronized with a 500 Hz triangular sweep pattern generated using Labview. Images were acquired at 5 kHz corresponding to six images per mirror scan, and 1000 scans per second. The six images obtained in a scan were reconstructed into a volumetric representation. The resulting spatial resolution was 500×500×6 voxels mapped to a field of interest covering 30 mm×30 mm×8 mm. The novel 3D OH PLIF system was applied toward imaging droplet combustion of methanol gelled with hydroxypropyl cellulose (HPC) (3 wt. %, 6 wt. %), as well as solid propellant combustion, and impinging jet spray combustion. The resulting 3D dataset shows a comprehensive view of jetting events in gelled droplet combustion that was not observed with high-speed imaging or 2D OH PLIF. Although the scan is noninstantaneous, the temporal and spatial resolution was sufficient to view the dynamic events in the multiphase combustion flow fields of interest. The system is limited by the repetition rate of the pulsed laser and the step response time of the galvanometric mirror; however, the repetition rates are sufficient to resolve events in the order of 100 Hz. Future upgrade includes 40 kHz pulsed UV laser system, which can reduce the scan time to 125 µs, while keeping the high repetition rate of 1000 Hz.

7.
Opt Lett ; 38(8): 1340-2, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23595478

RESUMO

A combined pure rotational coherent anti-Stokes Raman scattering (PRCARS) and vibrational CARS (VCARS) system has been developed. In this system two beams, a broadband beam centered at 607 nm and the frequency-doubled Nd:YAG output at 532 nm is used to generate the PRCARS signal. A second 532 nm beam is used along with the other two beams to simultaneously generate the N(2) VCARS signal using a standard phase-matching scheme.

8.
Appl Spectrosc ; 76(5): 541-547, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35209722

RESUMO

Simultaneous pure-rotational coherent anti-Stokes Raman spectroscopy (PRCARS) and vibrational O2 CARS spectroscopy (VCARS) were performed at elevated pressure and lowered temperature conditions in non-reacting compressible flow. We applied dual-pump CARS in a three-laser, three-color configuration to simultaneously acquire the PRCARS and VCARS spectra of O2. PRCARS spectra provide excellent sensitivity to temperature at relatively low temperatures. Pressure was extracted using the differential response of collisional effects in the PRCARS and the VCARS spectra. We used an under-expanded jet outside a choked converging nozzle as the compressible flow-field. We numerically analyze the pressure sensitivity of the combined CARS technique. Finally, we compare the collisional narrowing lineshape models of rotational diffusion narrowing and modified-exponential-gap model, for fitting the experimental spectrum.

9.
Appl Opt ; 48(11): 2086-93, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19363546

RESUMO

The design and performance of a third-generation megahertz-rate pulse burst laser system is described. The third-generation system incorporates two distinct design changes that distinguish it from earlier-generation systems. The first is that pulse slicing is now achieved by using an economical acousto-optic modulator (AOM), and the second is the use of a variable pulse duration flashlamp driver that provides relatively uniform gain over a ~700 mus window. The use of an AOM for pulse slicing permits flexible operation such as pulse-on-demand operation with variable pulse durations ranging from 10 ns to DC. The laser described here is capable of producing a burst of laser pulses at repetition rates as high as 50 MHz and peak powers of 10 kW. Second-harmonic conversion efficiency using a type II KTP crystal is also demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA