Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 44(4): 621-34, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22099309

RESUMO

Metabolic stress results in p53 activation, which can trigger cell-cycle arrest, ROS clearance, or apoptosis. However, what determines the p53-mediated cell fate decision upon metabolic stress is not very well understood. We show here that PGC-1α binds to p53 and modulates its transactivation function, resulting in preferential transactivation of proarrest and metabolic target genes. Thus glucose starvation results in p53-dependent cell-cycle arrest and ROS clearance, but abrogation of PGC-1α expression results in extensive apoptosis. Additionally, prolonged starvation results in PGC-1α degradation concomitant with induction of apoptosis. We have also identified RNF2, a Polycomb group (PcG) protein, as the cognate E3 ubiquitin ligase. Starvation of mice where PGC-1α expression is abrogated results in loss of p53-mediated ROS clearance, enhanced p53-dependent apoptosis, and consequent severe liver atrophy. These findings provide key insights into the role of PGC-1α in regulating p53-mediated cell fate decisions in response to metabolic stress.


Assuntos
Apoptose/efeitos dos fármacos , Glucose/deficiência , Fígado/metabolismo , Proteínas Repressoras/metabolismo , Estresse Fisiológico/genética , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citometria de Fluxo , Inativação Gênica/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Complexo Repressor Polycomb 1 , Ligação Proteica , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/antagonistas & inibidores , Transativadores/genética , Fatores de Transcrição , Ativação Transcricional/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases
2.
Int J Cancer ; 133(12): 2759-68, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23436247

RESUMO

E3 ubiquitin ligases and deubiquitylating enzymes (DUBs) are the key components of ubiquitin proteasome system which plays a critical role in cellular protein homeostasis. Any shortcoming in their biological roles can lead to various diseases including cancer. The dynamic interplay between ubiquitylation and deubiquitylation determines the level and activity of several proteins including p53, which is crucial for cellular stress response and tumor suppression pathways. In this review, we describe the different types of E3 ubiquitin ligases including those targeting tumor suppressor p53, SCF ligases and RING type ligases and accentuate on biological functions of few important E3 ligases in the cellular regulatory networks. Tumor suppressor p53 level is tightly regulated by multiple E3 ligases including Mdm2, COP1, Pirh2, etc. SCF ubiquitin ligase complexes are key regulators of cell cycle and signal transduction. BRCA1 and VHL RING type ligases function as tumor suppressors and play an important role in DNA repair and hypoxia response respectively. Further, we discuss the biological consequences of deregulation of the E3 ligases and the implications for cancer development. We also describe deubiquitylases which reverse the process of ubiquitylation and regulate diverse cellular pathways including metabolism, cell cycle control and chromatin remodelling. As the E3 ubiquitin ligases and DUBs work in a substrate specific manner, an improved understanding of them can lead to better therapeutics for cancer.


Assuntos
Neoplasias/etiologia , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitina/metabolismo , Animais , Proteína BRCA1/fisiologia , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Tioléster Hidrolases/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/fisiologia , Peptidase 7 Específica de Ubiquitina , Ubiquitinação
3.
iScience ; 25(2): 103811, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198876

RESUMO

p73 belongs to the p53 tumor suppressor family and is involved in the suppression of metastasis. However, its specific mechanism of action remains to be elucidated. Long non-coding RNAs portray a crucial role in tumor suppression. We have identified lncRNA FER1L4 as a p73 transcriptional target. The binding of p73 to FER1L4 promoter was established by bioinformatics analysis, luciferase reporter, and ChIP assays. Both FER1L4 and p73 knockdown enhanced the migration and invasion rate of colorectal cancer cells. FER1L4 also plays a critical role in p73-mediated cell-cycle arrest and apoptosis. FER1L4 sponged the expression of miR-1273g-3p, which, in turn, increased PTEN expression, leading to cell-cycle arrest. RNA in situ hybridization revealed the down-regulation of both p73 and FER1L4 expression in a metastatic colon cancer tissue as compared with non-metastatic tissue. Collectively, we impart conclusive proof that p73 exerts its anti-metastatic properties by inducing lncRNA FER1L4 in response to genotoxic stress.

4.
Oncogenesis ; 9(2): 12, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029709

RESUMO

p73 is a member of the p53 tumor suppressor family, which transactivates p53-responsive genes and mediates DNA damage response. Recent evidences suggest that p73 exerts its tumor suppressor functions by suppressing metastasis, but the exact mechanism remains unknown. Here, we identify Navigator-3 (NAV3), a microtubule-binding protein, as a novel transcriptional target of p73, which gets upregulated by DNA damage in a p73-dependent manner and plays a vital role in p73-mediated inhibition of cancer cell invasion, migration, and metastasis. Induction of p73 in response to DNA damage leads to rapid increase in endogenous NAV3 mRNA and protein levels. Through bioinformatic analysis, we identified two p73-binding sites in NAV3 promoter. Consistent with this, p73 binding to NAV3 promoter was confirmed through luciferase, Chromatin Immunoprecipitation, and site-directed mutagenesis assays. Abrogation of NAV3 and p73 expression significantly increased the invasion and migration rate of colorectal cancer cells as confirmed by wound-healing, cell invasion, and cell migration assays. Also, knockdown of NAV3 decreased the expression of E-cadherin and increased the expression of other prominent mesenchymal markers such as N-cadherin, Snail, Vimentin, and Fibronectin. Immunohistochemistry analysis revealed the downregulation of both NAV3 and p73 expression in metastatic colon cancer tissues as compared to non-metastatic cancer tissues. Additionally, the expression pattern of NAV3 and p73 showed extensively significant correlation in both non-metastatic and metastatic human colon cancer tissue samples. Taken together, our study provide conclusive evidence that Navigator-3 is a direct transcriptional target of p73 and plays crucial role in response to genotoxic stress in p73-mediated inhibition of cancer cell invasion, migration, and metastasis.

5.
Toxicol In Vitro ; 46: 19-28, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28986287

RESUMO

Triple-negative breast cancer (TNBC) represents the highly aggressive subgroup of breast cancers with poor prognosis due to absence of estrogen receptor (ER). Therefore, alternative targeted therapies are required against ER-negative breast cancers. Coumestrol, a phytoestrogen inhibits cell growth of ER-negative breast cancer MDA-MB-231 cells; the exact mechanism has not yet been reported. Unlike normal cells, cancer cells contain elevated copper which play an integral role in angiogenesis. The current focus of the work was to identify any possible role of copper in coumestrol cytotoxic action against breast cancer MDA-MB-231 cells. Results demonstrated that coumestrol inhibited cell viability, induced ROS generation, DNA damage, G1/S cell cycle arrest, up-regulation of Bax and apoptosis induction via caspase-dependent mitochondrial mediated pathway in MDA-MB-231 cells. Further, addition of copper chelator, neocuproine and ROS scavenger, N-acetyl cysteine were ineffective in abrogating coumestrol-mediated apoptosis. This suggests non-involvement of copper and ROS in coumestrol-induced apoptosis. To account for coumestrol-mediated up-regulation of Bax and apoptosis induction, direct binding potential between coumestrol and Bax/Bcl-2 was studied using in silico molecular docking studies. We propose that coumestrol directly enters cells and combines with Bax/Bcl-2 to alter their structures, thereby causing Bax binding to the outer mitochondrial membrane and Bcl-2 release from the mitochondria to initiate apoptosis. Thus, non-copper targeted ROS independent DNA damage is the central mechanism of coumestrol in ER-negative MDA-MB-231 cells. These findings will be useful in better understanding of anticancer mechanisms of coumestrol and establishing it as a lead molecule for TNBC treatment.


Assuntos
Cumestrol/uso terapêutico , Fitoestrógenos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas/ultraestrutura , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
6.
Transcription ; 3(3): 119-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22771946

RESUMO

Metabolic reprogramming is an integral part of tumorigenesis. Tumor suppressor p53 is a well studied transcription factor intimately linked with the control of cell cycle progression and apoptosis. Here, we discuss the emerging role of p53 in the transcriptional regulation of metabolism. This activity is a key component of p53 tumor suppression function.


Assuntos
Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Ciclo Celular , Transformação Celular Neoplásica/genética , Humanos , Fatores de Transcrição , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA