Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 118: 275-286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447884

RESUMO

xCT (Slc7a11), the specific subunit of the cystine/glutamate antiporter system xc-, is present in the brain and on immune cells, where it is known to modulate behavior and inflammatory responses. In a variety of cancers -including pancreatic ductal adenocarcinoma (PDAC)-, xCT is upregulated by tumor cells to support their growth and spread. Therefore, we studied the impact of xCT deletion in pancreatic tumor cells (Panc02) and/or the host (xCT-/- mice) on tumor burden, inflammation, cachexia and mood disturbances. Deletion of xCT in the tumor strongly reduced tumor growth. Targeting xCT in the host and not the tumor resulted only in a partial reduction of tumor burden, while it did attenuate tumor-related systemic inflammation and prevented an increase in immunosuppressive regulatory T cells. The latter effect could be replicated by specific xCT deletion in immune cells. xCT deletion in the host or the tumor differentially modulated neuroinflammation. When mice were grafted with xCT-deleted tumor cells, hypothalamic inflammation was reduced and, accordingly, food intake improved. Tumor bearing xCT-/- mice showed a trend of reduced hippocampal neuroinflammation with less anxiety- and depressive-like behavior. Taken together, targeting xCT may have beneficial effects on pancreatic cancer-related comorbidities, beyond reducing tumor burden. The search for novel and specific xCT inhibitors is warranted as they may represent a holistic therapy in pancreatic cancer.


Assuntos
Doenças Neuroinflamatórias , Neoplasias Pancreáticas , Camundongos , Animais , Encéfalo , Inflamação , Hipocampo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38936835

RESUMO

Depleting glutathione by xCT inhibition induces iron-dependent ferroptotic cell death, which is suppressed by lipophilic antioxidants. We screened food extracts with xCTKO-MEFs, identifying garlic extracts as particularly potent in inhibiting ferroptosis among the food extracts examined in this study. xCTKO-MEFs can serve as a convenient tool for identifying find food extracts that are effective in inhibiting ferroptosis.

3.
Mol Psychiatry ; 27(4): 2355-2368, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181756

RESUMO

The cystine/glutamate antiporter system xc- has been identified as the major source of extracellular glutamate in several brain regions as well as a modulator of neuroinflammation, and genetic deletion of its specific subunit xCT (xCT-/-) is protective in mouse models for age-related neurological disorders. However, the previously observed oxidative shift in the plasma cystine/cysteine ratio of adult xCT-/- mice led to the hypothesis that system xc- deletion would negatively affect life- and healthspan. Still, till now the role of system xc- in physiological aging remains unexplored. We therefore studied the effect of xCT deletion on the aging process of mice, with a particular focus on the immune system, hippocampal function, and cognitive aging. We observed that male xCT-/- mice have an extended lifespan, despite an even more increased plasma cystine/cysteine ratio in aged compared to adult mice. This oxidative shift does not negatively impact the general health status of the mice. On the contrary, the age-related priming of the innate immune system, that manifested as increased LPS-induced cytokine levels and hypothermia in xCT+/+ mice, was attenuated in xCT-/- mice. While this was associated with only a very moderate shift towards a more anti-inflammatory state of the aged hippocampus, we observed changes in the hippocampal metabolome that were associated with a preserved hippocampal function and the retention of hippocampus-dependent memory in male aged xCT-/- mice. Targeting system xc- is thus not only a promising strategy to prevent cognitive decline, but also to promote healthy aging.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Cistina , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Cisteína , Cistina/metabolismo , Ácido Glutâmico , Hipocampo/metabolismo , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Histochem Cell Biol ; 157(3): 347-357, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35239019

RESUMO

The cystine-glutamate transporter (xCT) is responsible for the transport of cystine into cells. We recently found that xCT-deficient (xCTKO) aged mice maintained a higher rate of ovulation and ovarian weight compared with wild-type (WT) mice. It has been reported that a xCT deficiency in cultured cells induces autophagy through the suppression of mTOR survival pathways. We have previously reported that starvation in neonatal mice increases the number of primordial follicles with concomitant autophagy activation. Therefore, we investigated age-related changes in follicle reserve and fertility in xCTKO mice and clarified whether the PI3K/AKT/mTOR signaling pathway contributes to this. The numbers of offspring in the xCTKO mice aged 10 and 12 months were significantly higher than those in the WT mice. The primordial follicle numbers in xCTKO neonatal mice tended to be higher than WT mice during all times evaluated. In contrast, the primary follicle number was significantly lower in the xCTKO mice at 60 h after birth. The expression of p-AKT, which promotes follicle development, was significantly lower in xCTKO mice than that in WT mice, whereas the expression ratios of LC3-II/LC3-I were significantly higher. The xCTKO mice had significantly more primordial follicles than WT mice at 2 months of age and showed a similar trend at 13-15 months of age. These results suggest that the maintenance of fertility in aged xCTKO mice can be attributed to high follicle reserve after puberty by suppression of follicle activation during the neonatal period.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Fertilidade , Reserva Ovariana , Fosfatidilinositol 3-Quinases , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Feminino , Fertilidade/genética , Camundongos , Folículo Ovariano/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Maturidade Sexual
5.
Mol Psychiatry ; 26(9): 4754-4769, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32366950

RESUMO

The astrocytic cystine/glutamate antiporter system xc- represents an important source of extracellular glutamate in the central nervous system, with potential impact on excitatory neurotransmission. Yet, its function and importance in brain physiology remain incompletely understood. Employing slice electrophysiology and mice with a genetic deletion of the specific subunit of system xc-, xCT (xCT-/- mice), we uncovered decreased neurotransmission at corticostriatal synapses. This effect was partly mitigated by replenishing extracellular glutamate levels, indicating a defect linked with decreased extracellular glutamate availability. We observed no changes in the morphology of striatal medium spiny neurons, the density of dendritic spines, or the density or ultrastructure of corticostriatal synapses, indicating that the observed functional defects are not due to morphological or structural abnormalities. By combining electron microscopy with glutamate immunogold labeling, we identified decreased intracellular glutamate density in presynaptic terminals, presynaptic mitochondria, and in dendritic spines of xCT-/- mice. A proteomic and kinomic screen of the striatum of xCT-/- mice revealed decreased expression of presynaptic proteins and abnormal kinase network signaling, that may contribute to the observed changes in postsynaptic responses. Finally, these corticostriatal deregulations resulted in a behavioral phenotype suggestive of autism spectrum disorder in the xCT-/- mice; in tests sensitive to corticostriatal functioning we recorded increased repetitive digging behavior and decreased sociability. To conclude, our findings show that system xc- plays a previously unrecognized role in regulating corticostriatal neurotransmission and influences social preference and repetitive behavior.


Assuntos
Transtorno do Espectro Autista , Ácido Glutâmico , Animais , Antiporters , Transtorno do Espectro Autista/genética , Cistina , Camundongos , Proteômica , Interação Social
6.
J Clin Biochem Nutr ; 71(1): 48-54, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35903611

RESUMO

Glutathione (GSH) is synthesized from three amino acids and the overall process is highly dependent on the availability of l-cysteine (l-Cys). GSH serves as an essential cofactor for glutathione peroxidase 4 (Gpx4), which reduces phospholipid hydroperoxides. The inactivation of Gpx4 or an insufficient supply of l-Cys results in the accumulation of lipid hydroperoxides, eventually leading to iron-dependent cell death, ferroptosis. In this study, we investigated the anti-ferroptotic properties of d-cysteine (d-Cys) under conditions of dysfunction in cystine transporter, xCT. l-Cys supplementation completely rescued ferroptosis that had been induced by the erastin-mediated inhibition of xCT in Hepa 1-6 cells. Upon d-Cys supplementation, the erastin-treated cells remained completely viable for periods of up to 24 h but eventually died after 48 h. d-Cys supplementation suppressed the production of lipid peroxides, thereby ferroptosis. The addition of d-Cys sustained intracellular Cys and GSH levels to a certain extent. When Hepa 1-6 cells were treated with a combination of buthionine sulfoximine and erastin, the anti-ferroptotic effect of d-Cys was diminished. These collective results indicate that, although d-Cys is not the direct source of GSH, d-Cys supplementation protects cells from ferroptosis in a manner that is dependent on GSH synthesis via stimulating the uptake of l-Cys.

7.
Arch Biochem Biophys ; 700: 108775, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33493440

RESUMO

Ferroptosis is a type of iron-dependent, non-apoptotic cell death, which is typically induced by cysteine starvation or by the inhibition of glutathione peroxidase 4 (GPX4) activity with the accompanying elevation in lipid peroxidation product levels. Despite the central role of mitochondria in oxidative metabolism and hence, as main sources of superoxide, the issue of whether mitochondrial superoxide participates in the execution of ferroptosis remains unclear. To gain additional insights into this issue, we employed suppressors of the site IQ electron leak (S1QEL) and suppressors of the site IIIQo electron leak (S3QEL), small molecules that suppress mitochondrial superoxide production from complex I and III, respectively. The findings indicate that S3QEL, but not S1QEL, significantly protected mouse hepatoma Hepa 1-6 cells from lipid peroxidation and the subsequent ferroptosis induced by cysteine (Cys) starvation (cystine deprivation from culture media or xCT inhibition by erastin). The intracellular levels of Cys and GSH remained low irrespective of life or death. Moreover, S3QEL also suppressed ferroptosis in xCT-knockout mouse-derived embryonic fibroblasts, which usually die under conventional cultivating conditions due to the absence of intracellular Cys and GSH. Although it has been reported that erastin induces the hyperpolarization of the mitochondrial membrane potential, no correlation was observed between hyperpolarization and cell death in xCT-knockout cells. Collectively, these results indicate that superoxide production from complex III plays a pivotal role in the ferroptosis that is induced by Cys starvation, suggesting that protecting mitochondria is a promising therapeutic strategy for the treatment of multiple diseases featuring ferroptosis.


Assuntos
Cisteína/deficiência , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ferroptose , Potencial da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Superóxidos/metabolismo , Animais , Células HeLa , Humanos , Camundongos
8.
Int J Cancer ; 147(11): 3224-3235, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818320

RESUMO

The cystine/glutamate antiporter, system xc- , is essential for the efficient uptake of cystine into cells. Interest in the mechanisms of system xc- function soared with the recognition that system xc- presents the most upstream node of ferroptosis, a recently described form of regulated necrosis relevant for degenerative diseases and cancer. Since targeting system xc- hold the great potential to efficiently combat tumor growth and metastasis of certain tumors, we disrupted the substrate-specific subunit of system xc- , xCT (SLC7A11) in the highly metastatic mouse B16F10 melanoma cell line and assessed the impact on tumor growth and metastasis. Subcutaneous injection of tumor cells into the syngeneic B16F10 mouse melanoma model uncovered a marked decrease in the tumor-forming ability and growth of KO cells compared to control cell lines. Strikingly, the metastatic potential of KO cells was markedly reduced as shown in several in vivo models of experimental and spontaneous metastasis. Accordingly, survival rates of KO tumor-bearing mice were significantly prolonged in contrast to those transplanted with control cells. Analyzing the in vitro ability of KO and control B16F10 cells in terms of endothelial cell adhesion and spheroid formation revealed that xCT expression indeed plays an important role during metastasis. Hence, system xc- emerges to be essential for tumor metastasis in mice, thus qualifying as a highly attractive anticancer drug target, particularly in light of its dispensable role for normal life in mice.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Técnicas de Inativação de Genes/métodos , Melanoma/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Taxa de Sobrevida
9.
J Immunol ; 201(2): 635-651, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29907708

RESUMO

Macrophages manifest distinct phenotype according to the organs in which they reside. In addition, they flexibly switch their character in adaptation to the changing environment. However, the molecular basis that explains the conversion of the macrophage phenotype has so far been unexplored. We find that CD169+ macrophages change their phenotype by regulating the level of a transcription factor Maf both in vitro and in vivo in C57BL/6J mice. When CD169+ macrophages were exposed to bacterial components, they expressed an array of acute inflammatory response genes in Maf-dependent manner and simultaneously start to downregulate Maf. This Maf suppression is dependent on accelerated degradation through proteasome pathway and microRNA-mediated silencing. The downregulation of Maf unlocks the NF-E2-related factor 2-dominant, cytoprotective/antioxidative program in the same macrophages. The present study provides new insights into the previously unanswered question of how macrophages initiate proinflammatory responses while retaining their capacity to repair injured tissues during inflammation.


Assuntos
Inflamação/imunologia , Macrófagos/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fenótipo , Proteólise , Proteínas Proto-Oncogênicas c-maf/genética , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo
10.
Exp Cell Res ; 384(1): 111592, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479686

RESUMO

Ferroptosis is characterized by an iron-dependent cell death with increased lipid peroxidation and is typically induced by either a decrease in glutathione (GSH) levels due to an insufficient supply of cysteine (Cys) or the inhibition of phospholipid hydroperoxide glutathione peroxidase (Gpx4). While lipid peroxides are the direct trigger for ferroptosis, the issue of how radical species involve in the cytocidal process remains unclear. To gain insights into this issue, we employed edaravone, a free radical scavenger that is clinically approved for the treatment of acute ischemic strokes and amyotrophic lateral sclerosis (ALS), against ferroptotic cell death caused by various situations, notably under cystine deprivation. We initially investigated the effects of edaravone on ferroptosis in mouse hepatoma Hepa 1-6 cells cultivated in cystine-free medium and found that edaravone largely suppressed ferroptosis. Ferroptosis that was induced in the cells by the use of inhibitors for xCT or Gpx4 was also suppressed by edaravone. Moreover, edaravone also suppressed ferroptosis in xCT-knockout mouse-derived embryonic fibroblasts, which usually die in normal cultivating conditions due to the depletion of intracellular Cys and GSH. Although the edaravone treatment had no effects on the intracellular levels of Cys and GSH, both of which remained low in Hepa 1-6 cells under conditions of cystine deprivation, the causative factors for ferroptosis, including ferrous iron and lipid peroxide levels, were significantly suppressed. Collectively, these results indicate that radical species produced at the initial stage of the cytocidal process under Cys-deprived conditions trigger ferroptosis and scavenging these radicals by edaravone represents a promising treatment.


Assuntos
Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Substâncias Protetoras/farmacologia , Animais , Linhagem Celular Tumoral , Cisteína/metabolismo , Edaravone/farmacologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo
11.
Epilepsia ; 60(7): 1412-1423, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31179549

RESUMO

OBJECTIVE: The cystine/glutamate antiporter system xc- could represent a new target for antiepileptogenic treatments due to its crucial roles in glutamate homeostasis and neuroinflammation. To demonstrate this, we compared epilepsy development and seizure susceptibility in xCT knockout mice (xCT-/- ) and in littermate controls (xCT+/+ ) in different chronic models of epilepsy. METHODS: Mice were surgically implanted with electrodes in the basolateral amygdala and chronically stimulated to develop self-sustained status epilepticus (SSSE); continuous video-electroencephalography monitoring was performed for 28 days after SE and hippocampal histopathology was assessed. Corneal kindling was induced by twice daily electrical stimulation at 6 Hz and maintenance of the fully kindled state was evaluated. Next, messenger RNA (mRNA) and protein levels of xCT and of the proteins involved in the phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase 3ß (GSK-3ß)/eukaryotic initiation factor 2α (eIF2α)/activating transcription factor 4 (ATF4) signaling pathway were measured at different time points during epileptogenesis in NMRI mice treated with pilocarpine. Finally, the anticonvulsant effect of sulfasalazine (SAS), a nonselective system xc- inhibitor, was assessed against 6 Hz-evoked seizures in pilocarpine-treated mice. RESULTS: In the SSSE model, xCT-/- mice displayed a significant delayed epileptogenesis, a reduced number of spontaneous recurrent seizures, and less pronounced astrocytic and microglial activation. Moreover, xCT-/- mice showed reduced seizure severity during 6 Hz kindling development and a lower incidence of generalized seizures during the maintenance of the fully kindled state. In pilocarpine-treated mice, protein levels of the PI3K/Akt/GSK-3ß/eIF2α/ATF4 pathway were increased during the chronic phase of the model, consistent with previous findings in the hippocampus of patients with epilepsy. Finally, repeated administration of SAS protected pilocarpine-treated mice against acute 6 Hz seizure induction, in contrast to sham controls, in which system xc- is not activated. SIGNIFICANCE: Inhibition of system xc- could be an attractive target for the development of new therapies with a potential for disease modification in epilepsy.


Assuntos
Sistema y+ de Transporte de Aminoácidos/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/etiologia , Epilepsia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pilocarpina/farmacologia , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/etiologia , Estado Epiléptico/metabolismo
12.
Glia ; 66(5): 951-970, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350434

RESUMO

The cystine-glutamate exchanger (xCT) promotes glutathione synthesis by catalyzing cystine uptake and glutamate release. The released glutamate may modulate normal neural signaling and contribute to excitotoxicity in pathological situations. Uncertainty, however, remains as neither the expression levels nor the distribution of xCT have been unambiguously determined. In fact, xCT has been reported in astrocytes, neurons, oligodendrocytes and microglia, but most of the information derives from cell cultures. Here, we show by immunohistochemistry and by Western blotting that xCT is widely expressed in the central nervous system of both sexes. The labeling specificity was validated using tissue from xCT knockout mice as controls. Astrocytes were selectively labeled, but showed greatly varying labeling intensities. This astroglial heterogeneity resulted in an astrocyte domain-like labeling pattern. Strong xCT labeling was also found in the leptomeninges, along some blood vessels, in selected circumventricular organs and in a subpopulation of tanycytes residing the lateral walls of the ventral third ventricle. Neurons, oligodendrocytes and resting microglia, as well as reactive microglia induced by glutamine synthetase deficiency, were unlabeled. The concentration of xCT protein in hippocampus was compared with that of the EAAT3 glutamate transporter by immunoblotting using a chimeric xCT-EAAT3 protein to normalize xCT and EAAT3 labeling intensities. The immunoblots suggested an xCT/EAAT3 ratio close to one (0.75 ± 0.07; average ± SEM; n = 4) in adult C57BL6 mice. CONCLUSIONS: xCT is present in select blood/brain/CSF interface areas and in an astrocyte subpopulation, in sufficient quantities to support the notion that system xc- provides physiologically relevant transport activity.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Astrócitos/citologia , Western Blotting , Encéfalo/citologia , Proteínas de Ligação ao Cálcio/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo
13.
Glia ; 66(9): 1845-1861, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29693305

RESUMO

The communication between the immune and central nervous system (CNS) is affected in many neurological disorders. Peripheral injections of the endotoxin lipopolysaccharide (LPS) are widely used to study this communication: an LPS challenge leads to a biphasic syndrome that starts with acute sickness and is followed by persistent brain inflammation and chronic behavioral alterations such as depressive-like symptoms. In vitro, the response to LPS treatment has been shown to involve enhanced expression of system x c - . This cystine-glutamate antiporter, with xCT as specific subunit, represents the main glial provider of extracellular glutamate in mouse hippocampus. Here we injected male xCT knockout and wildtype mice with a single intraperitoneal dose of 5 mg/kg LPS. LPS-injection increased hippocampal xCT expression but did not alter the mainly astroglial localization of the xCT protein. Peripheral and central inflammation (as defined by cytokine levels and morphological activation of microglia) as well as LPS-induced sickness and depressive-like behavior were significantly attenuated in xCT-deficient mice compared with wildtype mice. Our study is the first to demonstrate the involvement of system x c - in peripheral and central inflammation in vivo and the potential therapeutic relevance of its inhibition in brain disorders characterized by peripheral and central inflammation, such as depression.


Assuntos
Sistema y+ de Transporte de Aminoácidos/deficiência , Depressão/metabolismo , Comportamento de Doença/fisiologia , Inflamação/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Citocinas/metabolismo , Depressão/patologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Deleção de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/patologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , RNA Mensageiro/metabolismo
14.
Nitric Oxide ; 78: 32-40, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29792932

RESUMO

The amino acid transport system xc- is important for maintaining intracellular glutathione levels and extracellular redox balance. The main component of system xc-, xCT, is strongly induced by various stimuli, including oxidative stress and bacterial lipopolysaccharides (LPS) in macrophages. In the present study, we investigated the production of nitric oxide by LPS-stimulated mouse peritoneal macrophages isolated from both xCT-deficient and wild-type mice. After culturing macrophages in the presence of LPS for 24-48 h, nitrite levels in the medium of xCT-deficient macrophages were significantly decreased compared to that of wild-type cells. However, the transport activity of arginine, a precursor of nitric oxide, and the expression of nitric oxide synthase 2 in xCT-deficient macrophages were similar to those of wild-type cells. When wild-type macrophages were cultured in the medium that contained no cystine, nitric oxide production was decreased to the level similar to that of the xCT-deficient macrophages. When xCT-deficient macrophages were cultured with 2-mercaptoethanol, intracellular cysteine levels were increased and nitrite accumulation in the medium was significantly increased. On the other hand, when these cells were cultured with buthionine sulfoximine, an inhibitor of glutathione synthesis, nitrite accumulation in the medium was essentially unchanged, although intracellular glutathione levels were very low. Reactive oxygen species levels in xCT-deficient macrophages were higher than those of wild-type cells, and treatment with LPS caused an increase in oxidative stress in both cells. These results suggest that intracellular cysteine supplied by xCT contributes to nitric oxide production and the reduction of oxidative stress in macrophages.


Assuntos
Sistema y+ de Transporte de Aminoácidos/deficiência , Macrófagos Peritoneais/metabolismo , Óxido Nítrico/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Cisteína/metabolismo , Cistina/metabolismo , Glutationa/metabolismo , Mercaptoetanol/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
15.
Exp Cell Res ; 361(1): 178-191, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079265

RESUMO

Extracellular cystine, the oxidized form of cysteine (Cys), is taken up by cells via the cystine transporter xCT. xCT is not expressed in the liver but is induced in primary hepatocytes under conventional cultured conditions. However, compared to wild-type hepatocytes those from the xCT-knockout mouse showed no evidence of an abnormality and the levels of both Cys and glutathione (GSH) remained unchanged. The levels of ophthalmic acid (OPT), which is produced as an alternative compound by the GSH-synthesizing pathway, became increased during the culturing of hepatocytes. It therefore appears that, in primary hepatocytes, Cys is provided by systems other than xCT, most likely via the transsulfuration pathway, but the levels that are produced are not sufficient. We also employed mouse hepatoma-derived Hepa1-6 cells, which constitutively express xCT. When Hepa 1-6 cells were cultivated in Cys-free media, the levels of intracellular Cys and GSH were decreased, compared to cells cultured in conventional media, leading to cell death accompanied by an increase in the levels of reactive oxygen species and lipid peroxidation products with characteristics similar to ferroptosis. While OPT levels were increased by only to a limited extent in Hepa 1-6 cells, primary hepatocytes cultured in Cys- and Met-free media showed a marked elevation in OPT, reaching levels nearly equivalent to the GSH levels when the cells were cultured in conventional media. Thus, OPT may become a marker for Cys insufficiency and might be used to predict pathological conditions of cells with elevated oxidative stress.


Assuntos
Sistema y+ de Transporte de Aminoácidos/fisiologia , Proliferação de Células , Cisteína/química , Glutationa/química , Hepatócitos/metabolismo , Oligopeptídeos/metabolismo , Animais , Apoptose , Células Cultivadas , Cisteína/metabolismo , Glutationa/metabolismo , Hepatócitos/citologia , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
16.
J Neuroinflammation ; 14(1): 9, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086920

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System xc- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. METHODS: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system xc-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT-/-) mice and irradiated mice reconstituted in xCT-/- bone marrow (BM), to their proper wild type (xCT+/+) controls. RESULTS: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT+/+ mice, xCT-/- mice were equally susceptible to EAE, whereas mice transplanted with xCT-/- BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. CONCLUSIONS: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system xc- on immune cells invading the CNS participates to EAE. Since a total loss of system xc- had no net beneficial effects, these results have important implications for targeting system xc- for treatment of MS.


Assuntos
Sistema y+ de Transporte de Aminoácidos/deficiência , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Imunidade Celular/fisiologia , Esclerose Múltipla/metabolismo , Idoso , Idoso de 80 Anos ou mais , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/imunologia , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia/patologia , Microglia/fisiologia , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia
17.
J Biol Chem ; 290(14): 8778-88, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25713140

RESUMO

The cystine/glutamate transporter, designated as system xc(-), is important for maintaining intracellular glutathione levels and extracellular redox balance. The substrate-specific component of system xc(-), xCT, is strongly induced by various stimuli, including oxidative stress, whereas it is constitutively expressed only in specific brain regions and immune tissues, such as the thymus and spleen. Although cystine and glutamate are the well established substrates of system xc(-) and the knockout of xCT leads to alterations of extracellular redox balance, nothing is known about other potential substrates. We thus performed a comparative metabolite analysis of tissues from xCT-deficient and wild-type mice using capillary electrophoresis time-of-flight mass spectrometry. Although most of the analyzed metabolites did not show significant alterations between xCT-deficient and wild-type mice, cystathionine emerged as being absent specifically in the thymus and spleen of xCT-deficient mice. No expression of either cystathionine ß-synthase or cystathionine γ-lyase was observed in the thymus and spleen of mice. In embryonic fibroblasts derived from wild-type embryos, cystine uptake was significantly inhibited by cystathionine in a concentration-dependent manner. Wild-type cells showed an intracellular accumulation of cystathionine when incubated in cystathionine-containing buffer, which concomitantly stimulated an increased release of glutamate into the extracellular space. By contrast, none of these effects could be observed in xCT-deficient cells. Remarkably, unlike knock-out cells, wild-type cells could be rescued from cystine deprivation-induced cell death by cystathionine supplementation. We thus conclude that cystathionine is a novel physiological substrate of system xc(-) and that the accumulation of cystathionine in immune tissues is exclusively mediated by system xc(-).


Assuntos
Cistationina/metabolismo , Sistema Imunitário/fisiologia , Sistema y+ de Transporte de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Glia ; 64(8): 1381-95, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27247047

RESUMO

The cystine/glutamate antiporter is a membrane transport system responsible for the uptake of extracellular cystine and release of intracellular glutamate. It is the major source of cystine in most cells, and a key regulator of extrasynaptic glutamate in the CNS. Because cystine is the limiting factor in the biosynthesis of glutathione, and glutamate is the most abundant neurotransmitter, the cystine/glutamate antiporter is a central player both in antioxidant defense and glutamatergic signaling, two events critical to brain function. However, distribution of cystine/glutamate antiporter in CNS has not been well characterized. Here, we analyzed expression of the catalytic subunit of the cystine/glutamate antiporter, xCT, by immunohistochemistry in histological sections of the forebrain and spinal cord. We detected labeling in neurons, oligodendrocytes, microglia, and oligodendrocyte precursor cells, but not in GFAP(+) astrocytes. In addition, we examined xCT expression and function by qPCR and cystine uptake in primary rat cultures of CNS, detecting higher levels of antiporter expression in neurons and oligodendrocytes. Chronic inhibition of cystine/glutamate antiporter caused high toxicity to cultured oligodendrocytes. In accordance, chronic blockage of cystine/glutamate antiporter as well as glutathione depletion caused myelin disruption in organotypic cerebellar slices. Finally, mice chronically treated with sulfasalazine, a cystine/glutamate antiporter inhibitor, showed a reduction in the levels of myelin and an increase in the myelinated fiber g-ratio. Together, these results reveal that cystine/glutamate antiporter is expressed in oligodendrocytes, where it is a key factor to the maintenance of cell homeostasis. GLIA 2016. GLIA 2016;64:1381-1395.


Assuntos
Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Acídicos/antagonistas & inibidores , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Morte Celular/fisiologia , Células Cultivadas , Doenças Desmielinizantes/patologia , Glutationa/deficiência , Camundongos , Microglia/metabolismo , Microglia/patologia , Bainha de Mielina/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Técnicas de Cultura de Tecidos
19.
Brain ; 138(Pt 1): 53-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384799

RESUMO

Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic disease. Therefore, we show that system [Formula: see text] participates in microglial reactivity and modulates amyotrophic lateral sclerosis motor neuron degeneration, revealing system [Formula: see text] inactivation, as a potential approach to slow amyotrophic lateral sclerosis disease progression after onset of clinical symptoms.


Assuntos
Sistema ASC de Transporte de Aminoácidos/deficiência , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Microglia/metabolismo , Esclerose Lateral Amiotrófica/mortalidade , Animais , Animais Recém-Nascidos , Córtex Cerebral/citologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Mutação/genética , Óxido Nítrico/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase-1
20.
Nucleic Acids Res ; 40(Database issue): D809-14, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22139941

RESUMO

The Mouse Multiple Tissue Metabolome Database (MMMDB) provides comprehensive and quantitative metabolomic information for multiple tissues from single mice. Manually curated databases that integrate literature-based individual metabolite information have been available so far. However, data sets on the absolute concentration of a single metabolite integrated from multiple resources are often difficult to be used when different metabolomic studies are compared because the relative balance of the multiple metabolite concentrations in the metabolic pathways as a snapshot of a dynamic system is more important than the absolute concentration of a single metabolite. We developed MMMDB by performing non-targeted analyses of cerebra, cerebella, thymus, spleen, lung, liver, kidney, heart, pancreas, testis and plasma using capillary electrophoresis time-of-flight mass spectrometry and detected 428 non-redundant features from which 219 metabolites were successfully identified. Quantified concentrations of the individual metabolites and the corresponding processed raw data; for example, the electropherograms and mass spectra with their annotations, such as isotope and fragment information, are stored in the database. MMMDB is designed to normalize users' data, which can be submitted online and used to visualize overlaid electropherograms. Thus, MMMDB allows newly measured data to be compared with the other data in the database. MMMDB is available at: http://mmmdb.iab.keio.ac.jp.


Assuntos
Bases de Dados Factuais , Metaboloma , Metabolômica , Animais , Eletroforese Capilar , Internet , Espectrometria de Massas , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA