Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Malar J ; 23(1): 167, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807175

RESUMO

BACKGROUND: Malaria poses a substantial public health threat in Myanmar, indicating the need for rigorous efforts to achieve elimination of the disease nationwide by 2030. The use of insecticide-treated nets (ITNs) forms part of a pivotal strategy for preventing transmission. This study explored the ownership and use of ITNs in Myanmar and identified factors associated with non-use of ITNs. METHODS: Household datasets from the 2015-2016 Myanmar Demographic and Health Survey were utilised, which encompassed all household members except children under the age of five. Descriptive statistics and inferential tests, including simple and multiple logistics regression models and Pearson correlations, were employed for analysis. All analyses, taking the two-stage stratified cluster sampling design into account, used weighting factors and the "svyset" command in STATA. The ownership and use of bed nets were also visualised in QGIS maps. RESULTS: Among the 46,507 participants, 22.3% (95% CI 20.0%, 24.5%) had access to ITNs, with only 15.3% (95% CI 13.7, 17.1%) sleeping under an ITN the night before the survey. Factors associated with the non-use of ITNs included age category (15-34 years-aOR: 1.17, 95% CI 1.01, 1.30; 50+ years-aOR: 1.19, 95% CI 1.06, 1.33), location (delta or lowland-aOR: 5.39, 95% CI 3.94, 7.38; hills-aOR: 1.80, 95% CI 1.20, 2.71; plains-aOR: 3.89, 95% CI 2.51, 6.03), urban residency (aOR: 1.63, 95% CI 1.22, 2.17), and wealth quintile (third-aOR: 1.38, 95% CI 1.08, 1.75; fourth-aOR: 1.65, 95% CI 1.23, 2.23; fifth-aOR: 1.47, 95% CI 1.02, 2.13). A coherent distribution of the ownership and use of ITNs was seen across all states/regions, and a strong correlation existed between the ownership and use of ITNs (r: 0.9795, 95% CI 0.9377, 0.9933, alpha < 0.001). CONCLUSIONS: This study identified relatively low percentages of ITN ownership and use, indicating the need to increase the distribution of ITNs to achieve the target of at least one ITN per every two people. Strengthening the use of ITNs requires targeted health promotion interventions, especially among relatively affluent individuals residing in delta or lowland areas, hills, and plains.


Assuntos
Mosquiteiros Tratados com Inseticida , Propriedade , Mianmar , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Propriedade/estatística & dados numéricos , Adulto , Adolescente , Pessoa de Meia-Idade , Masculino , Adulto Jovem , Feminino , Humanos , Inquéritos Epidemiológicos , Malária/prevenção & controle , Idoso , Controle de Mosquitos/estatística & dados numéricos , Controle de Mosquitos/métodos , Pré-Escolar , Características da Família , Lactente
2.
Malar J ; 23(1): 239, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128989

RESUMO

BACKGROUND: Typically mobile and vulnerable, migrants face significant barriers to access to routine malaria prevention, diagnostics and treatment, which leads to unchecked malaria transmission, particularly in border regions with a high population displacement. This study aimed to investigate the demographic and socioeconomic obstacles to access to malaria services among Myanmar migrants residing in the Thailand-Myanmar border areas. METHODS: A cross-sectional study was conducted in early 2024 across three districts near the Thailand-Myanmar border. Quantitative data were collected from Myanmar migrants using standardized questionnaires through structured surveys. Data analysis included descriptive statistics and simple and multiple logistic regression models. RESULTS: Out of 300 participants, approximately a quarter (27.3%) reported adequate access to comprehensive malaria services, including prevention, diagnostics, treatment and malaria-related health information. In multiple logistic regression models, factors associated with inadequate access included Myanmar migrants aged over 60 years (aOR: 7.63, 95% CI 1.74-20.58), accompanied by one to three family members (aOR: 3.33, 95% CI 1.06-8.45), earning monthly incomes below 3000 THB (aOR: 5.13, 95% CI 1.38-19.09) and 3000 to 6000 THB (aOR: 3.64, 95% CI 1.06-12.51), belonging to the Karen ethnicity (aOR: 2.13, 95% CI 1.02-3.84), with poor perception toward malaria (aOR: 2.03, 95% CI 1.03-4.01) and with poor preventive and health-seeking practices (aOR: 5.83, 95% CI 2.71-9.55). CONCLUSIONS: A significant proportion of Myanmar migrants encounter demographic and socioeconomic barriers to access to routine malaria services in Thailand. Tailored interventions are required to expand such access, including the recruitment of worksite health volunteers, strengthening the role of ethnic health organizations across the border and collaboration with private sector stakeholders (e.g. farm/company owners) to distribute preventive tools and ensure timely referral of suspected malaria cases to health facilities.


Assuntos
Acessibilidade aos Serviços de Saúde , Malária , Migrantes , Mianmar , Tailândia , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Estudos Transversais , Malária/prevenção & controle , Migrantes/estatística & dados numéricos , Masculino , Feminino , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Fatores Socioeconômicos , Adolescente , Idoso
3.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979329

RESUMO

Recent reports from Thailand reveal a substantial surge in Plasmodium knowlesi cases over the past decade, with a more than eightfold increase in incidence by 2023 compared to 2018. This study investigates temporal changes in genetic polymorphism associated with the escalating transmission of P. knowlesi malaria in Thailand over the past two decades. Twenty-five P. knowlesi samples collected in 2018-2023 were sequenced for the 42-kDa region of pkmsp1 and compared with 24 samples collected in 2000-2009, focusing on nucleotide diversity, natural selection, recombination rate, and population differentiation. Seven unique haplotypes were identified in recent samples, compared to 15 in earlier samples. Nucleotide and haplotype diversities were lower in recent samples (π = 0.016, Hd = 0.817) than in earlier samples (π = 0.018, Hd = 0.942). Significantly higher synonymous substitution rates were observed in both sample sets (dS - dN = 2.77 and 2.43, p < 0.05), indicating purifying selection and reduced genetic diversity over time. Additionally, 8 out of 17 mutation points were located on B-cell epitopes, suggesting an adaptive response by the parasites to evade immune recognition. Population differentiation analysis using the fixation index (Fst) revealed high genetic differentiation between parasite populations in central and southern Thailand or Malaysia. Conversely, the relatively lower Fst value between southern Thailand and Malaysia suggests a closer genetic relationship, possibly reflecting historical gene flow. In conclusion, our findings highlight a decline in genetic diversity and evidence of purifying selection associated with the recently increased incidence of P. knowlesi malaria in Thailand. The minor genetic differentiation between P. knowlesi populations from southern Thailand and Malaysia suggests a shared recent ancestry of these parasites and underscores the need for coordinated efforts between the two countries for the elimination of P. knowlesi.

4.
PLoS Negl Trop Dis ; 18(7): e0012299, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959285

RESUMO

An improved understanding of the Plasmodium vivax populations in the Great Mekong Subregion (GMS) is needed to monitor the progress of malaria elimination. This study aimed to use a P. vivax single nucleotide polymorphism (SNP) barcode to evaluate the population dynamics and explore the gene flow among P. vivax parasite populations in the western GMS (China, Myanmar and Thailand). A total of 315 P. vivax patient samples collected in 2011 and 2018 from four regions of the western GMS were genotyped for 42 SNPs using the high-throughput MassARRAY SNP genotyping technology. Population genetic analysis was conducted to estimate the genetic diversity, effective population size, and population structure among the P. vivax populations. Overall, 291 samples were successfully genotyped at 39 SNPs. A significant difference was observed in the proportion of polyclonal infections among the five P. vivax populations (P = 0.0012, Pearson Chi-square test, χ2 = 18.1), with western Myanmar having the highest proportion (96.2%, 50/52) in 2018. Likewise, the average complexity of infection was also highest in western Myanmar (1.31) and lowest in northeast Myanmar (1.01) in 2018. The older samples from western China in 2011 had the highest pairwise nucleotide diversity (π, 0.388 ± 0.046), expected heterozygosity (He, 0.363 ± 0.02), and the largest effective population size. In comparison, in the neighboring northeast Myanmar, the more recent samples in 2018 showed the lowest values (π, 0.224 ± 0.036; He, 0.220 ± 0.026). Furthermore, the 2018 northeast Myanmar parasites showed high and moderate genetic differentiation from other populations with FST values of 0.162-0.252, whereas genetic differentiation among other populations was relatively low (FST ≤ 0.059). Principal component analysis, phylogeny, and STRUCTURE analysis showed that the P. vivax population in northeast Myanmar in 2018 substantially diverged from other populations. Although the 42 SNP barcode is a valuable tool for tracking parasite origins of worldwide parasite populations, a more extended barcode with additional SNPs is needed to distinguish the more related parasite populations in the western GMS.


Assuntos
Código de Barras de DNA Taxonômico , Malária Vivax , Plasmodium vivax , Polimorfismo de Nucleotídeo Único , Plasmodium vivax/genética , Plasmodium vivax/classificação , Humanos , Malária Vivax/parasitologia , Malária Vivax/epidemiologia , Mianmar/epidemiologia , Tailândia/epidemiologia , Genótipo , China/epidemiologia , Variação Genética , Fluxo Gênico
5.
PLoS Negl Trop Dis ; 18(6): e0012231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38865344

RESUMO

BACKGROUND: Malaria transmission-blocking vaccines (TBVs) aim to inhibit malaria parasite development in mosquitoes and prevent further transmission to the human host. The putative-secreted ookinete protein 25 (PSOP25), highly conserved in Plasmodium spp., is a promising TBV target. Here, we investigated PvPSOP25 from P. vivax as a TBV candidate using transgenic murine parasite P. berghei and clinical P. vivax isolates. METHODS AND FINDINGS: A transgenic P. berghei line expressing PvPSOP25 (TrPvPSOP25Pb) was generated. Full-length PvPSOP25 was expressed in the yeast Pichia pastoris and used to immunize mice to obtain anti-rPvPSOP25 sera. The transmission-blocking activity of the anti-rPvPSOP25 sera was evaluated through in vitro assays and mosquito-feeding experiments. The antisera generated by immunization with rPvPSOP25 specifically recognized the native PvPSOP25 antigen expressed in TrPvPSOP25Pb ookinetes. In vitro assays showed that the immune sera significantly inhibited exflagellation and ookinete formation of the TrPvPSOP25Pb parasite. Mosquitoes feeding on mice infected with the transgenic parasite and passively transferred with the anti-rPvPSOP25 sera showed a 70.7% reduction in oocyst density compared to the control group. In a direct membrane feeding assay conducted with five clinical P. vivax isolates, the mouse anti-rPvPSOP25 antibodies significantly reduced the oocyst density while showing a negligible influence on mosquito infection prevalence. CONCLUSIONS: This study supported the feasibility of transgenic murine malaria parasites expressing P. vivax antigens as a useful tool for evaluating P. vivax TBV candidates. Meanwhile, the moderate transmission-reducing activity of the generated anti-rPvPSOP25 sera necessitates further research to optimize its efficacy.


Assuntos
Vacinas Antimaláricas , Malária Vivax , Plasmodium berghei , Plasmodium vivax , Proteínas de Protozoários , Animais , Camundongos , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Humanos , Malária Vivax/transmissão , Malária Vivax/parasitologia , Malária Vivax/prevenção & controle , Malária Vivax/imunologia , Feminino , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Malária/transmissão , Malária/prevenção & controle , Malária/parasitologia , Malária/imunologia , Camundongos Endogâmicos BALB C
6.
JMIR Public Health Surveill ; 10: e51993, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922648

RESUMO

BACKGROUND: A challenge in achieving the malaria-elimination target in the Greater Mekong Subregion, including Thailand, is the predominance of Plasmodium vivax malaria, which has shown extreme resilience to control measures. OBJECTIVE: This proof-of-concept study aimed to provide evidence for implementing primaquine mass drug administration (pMDA) as a strategy for P. vivax elimination in low-endemicity settings. METHODS: The study employed a mixed-methods trial to thoroughly evaluate the effectiveness, safety, acceptability, and community engagement of pMDA. The quantitative part was designed as a 2-period cluster-crossover randomized controlled trial. The intervention was pMDA augmented to the national prevention and control standards with directly observed treatment (DOT) by village health volunteers. The qualitative part employed in-depth interviews and brainstorming discussions. The study involved 7 clusters in 2 districts of 2 southern provinces in Thailand with persistently low P. vivax transmission. In the quantitative part, 5 cross-sectional blood surveys were conducted in both the pMDA and control groups before and 3 months after pMDA. The effectiveness of pMDA was determined by comparing the proportions of P. vivax infections per 1000 population between the 2 groups, with a multilevel zero-inflated negative binomial model adjusted for cluster and time as covariates and the interaction. The safety data comprised adverse events after drug administration. Thematic content analysis was used to assess the acceptability and engagement of stakeholders. RESULTS: In the pre-pMDA period, the proportions of P. vivax infections in the pMDA (n=1536) and control (n=1577) groups were 13.0 (95% CI 8.2-20.4) and 12.0 (95% CI 7.5-19.1), respectively. At month 3 post-pMDA, these proportions in the pMDA (n=1430) and control (n=1420) groups were 8.4 (95% CI 4.6-15.1) and 5.6 (95% CI 2.6-11.5), respectively. No statistically significant differences were found between the groups. The number of malaria cases reduced in all clusters in both groups, and thus, the impact of pMDA was inconclusive. There were no major safety concerns. Acceptance among the study participants and public health care providers at local and national levels was high, and they believed that pMDA had boosted awareness in the community. CONCLUSIONS: pMDA was associated with high adherence, safety, and tolerability, but it may not significantly impact P. vivax transmission. As this was a proof-of-concept study, we decided not to scale up the intervention with larger clusters and samples. An alternative approach involving a targeted primaquine treatment strategy with primaquine and DOT is currently being implemented. We experienced success regarding effective health care workforces at point-of-care centers, effective collaborations in the community, and commitment from authorities at local and national levels. Our efforts boosted the acceptability of the malaria-elimination initiative. Community engagement is recommended to achieve elimination targets. TRIAL REGISTRATION: Thai Clinical Trials Registry TCTR20190806004; https://www.thaiclinicaltrials.org/show/TCTR20190806004.


Assuntos
Antimaláricos , Malária Vivax , Administração Massiva de Medicamentos , Primaquina , Humanos , Primaquina/uso terapêutico , Primaquina/administração & dosagem , Tailândia/epidemiologia , Administração Massiva de Medicamentos/métodos , Administração Massiva de Medicamentos/estatística & dados numéricos , Masculino , Feminino , Adulto , Adolescente , Malária Vivax/tratamento farmacológico , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Pessoa de Meia-Idade , Adulto Jovem , Estudo de Prova de Conceito , Criança , Estudos Cross-Over , Estudos Transversais , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Aceitação pelo Paciente de Cuidados de Saúde/psicologia
7.
Int J Antimicrob Agents ; 63(5): 107112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367843

RESUMO

The control and elimination of malaria caused by Plasmodium vivax is hampered by the threat of relapsed infection resulting from the activation of dormant hepatic hypnozoites. Currently, only the 8-aminoquinolines, primaquine and tafenoquine, have been approved for the elimination of hypnozoites, although their use is hampered by potential toxicity. Therefore, an alternative radical curative drug that safely eliminates hypnozoites is a pressing need. This study assessed the potential hypnozoiticidal activity of the antibiotic azithromycin, which is thought to exert antimalarial activity by inhibiting prokaryote-like ribosomal translation within the apicoplast, an indispensable organelle. The results show that azithromycin inhibited apicoplast development during liver-stage schizogony in P. vivax and Plasmodium cynomolgi, leading to impaired parasite maturation. More importantly, this study found that azithromycin is likely to impair the hypnozoite's apicoplast, resulting in the loss of this organelle. Subsequently, using a recently developed long-term hepatocyte culture system, this study found that this loss likely induces a delay in the hypnozoite activation rate, and that those parasites that do proceed to schizogony display liver-stage arrest prior to differentiating into hepatic merozoites, thus potentially preventing relapse. Overall, this work provides evidence for the potential use of azithromycin for the radical cure of relapsing malaria, and identifies apicoplast functions as potential drug targets in quiescent hypnozoites.


Assuntos
Antimaláricos , Apicoplastos , Azitromicina , Fígado , Plasmodium cynomolgi , Plasmodium vivax , Azitromicina/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Antimaláricos/farmacologia , Fígado/parasitologia , Fígado/efeitos dos fármacos , Apicoplastos/efeitos dos fármacos , Animais , Hepatócitos/parasitologia , Hepatócitos/efeitos dos fármacos , Humanos , Biogênese de Organelas , Malária Vivax/parasitologia , Malária Vivax/tratamento farmacológico , Camundongos , Malária/parasitologia , Malária/tratamento farmacológico
8.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370683

RESUMO

New therapeutics are a priority for preventing and eliminating Plasmodium vivax (Pv) malaria because of its easy transmissibility and dormant stages in the liver. Relapses due to the dormant liver stages are the major contributor to reoccurring Pv. Therefore, therapies that reduce the establishment of dormant parasites and blood-stage infection are important for controlling this geographically widespread parasite. Here, we isolated 12 human monoclonal antibodies (humAbs) from the plasma of a Pv-exposed individual that recognized Pv apical membrane antigen 1 (PvAMA1). PvAMA1 is important for both sporozoite invasion of hepatocytes and merozoite invasion of reticulocytes. We identified one humAb, 826827, that blocked invasion of human erythrocytes using a transgenic P. falciparum line expressing PvAMA1 (IC 50 = 3 µg/mL) and all Pv clinical isolates in vitro . This humAb also inhibited sporozoite invasion of a human hepatocyte cell line and primary human hepatocytes (IC 50 of 0.3 - 3.7 µg/mL). The crystal structure of recombinant PvAMA1 with the antigen-binding fragment of 826827 at 2.4 Å resolution shows that the humAb partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. HumAb 826827 binds to PvAMA1 with higher affinity than RON2, accounting for its potency. To our knowledge, this is the first reported humAb specific to PvAMA1, and the PvAMA1 residues it binds to are highly conserved across different isolates, explaining its strain-transcendent properties.

10.
Malariaworld J ; 4: 16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-38828116

RESUMO

Mosquito feeding assays play an important role in quantifying malaria transmission potential in epidemiological and clinical studies. At present, membrane feeding assays are incompletely standardised. This affects our understanding of the precision of the assay and its suitability for evaluating transmission-blocking interventions. Here, we present a detailed protocol for membrane feeding using Anopheles gambiae mosquitoes and naturally P. falciparum infected individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA