Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 614(7949): 708-712, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792825

RESUMO

The latitudinal diversity gradient (LDG) is a prevalent feature of modern ecosystems across diverse clades1-4. Recognized for well over a century, the causal mechanisms for LDGs remain disputed, in part because numerous putative drivers simultaneously covary with latitude1,3,5. The past provides the opportunity to disentangle LDG mechanisms because the relationships among biodiversity, latitude and possible causal factors have varied over time6-9. Here we quantify the emergence of the LDG in planktonic foraminifera at high spatiotemporal resolution over the past 40 million years, finding that a modern-style gradient arose only 15 million years ago. Spatial and temporal models suggest that LDGs for planktonic foraminifera may be controlled by the physical structure of the water column. Steepening of the latitudinal temperature gradient over 15 million years ago, associated with an increased vertical temperature gradient at low latitudes, may have enhanced niche partitioning and provided more opportunities for speciation at low latitudes. Supporting this hypothesis, we find that higher rates of low-latitude speciation steepened the diversity gradient, consistent with spatiotemporal patterns of depth partitioning by planktonic foraminifera. Extirpation of species from high latitudes also strengthened the LDG, but this effect tended to be weaker than speciation. Our results provide a step change in understanding the evolution of marine LDGs over long timescales.


Assuntos
Organismos Aquáticos , Biodiversidade , Foraminíferos , Mapeamento Geográfico , Plâncton , Análise Espaço-Temporal , Organismos Aquáticos/classificação , Organismos Aquáticos/isolamento & purificação , Evolução Biológica , Foraminíferos/classificação , Foraminíferos/isolamento & purificação , Especiação Genética , História Antiga , Filogeografia , Plâncton/classificação , Plâncton/isolamento & purificação , Temperatura , Fatores de Tempo , Água/análise , Hidrobiologia
2.
Proc Natl Acad Sci U S A ; 120(33): e2306220120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37535654

RESUMO

The latitudinal diversity gradient (LDG) describes the pattern of increasing numbers of species from the poles to the equator. Although recognized for over 200 years, the mechanisms responsible for the largest-scale and longest-known pattern in macroecology are still actively debated. I argue here that any explanation for the LDG must invoke differential rates of speciation, extinction, extirpation, or dispersal. These processes themselves may be governed by numerous abiotic or biotic factors. Hypotheses that claim not to invoke differential rates, such as 'age and area' or 'time for diversification', eschew focus from rate variation that is assumed by these explanations. There is still significant uncertainty in how rates of speciation, extinction, extirpation, and dispersal have varied regionally over Earth history. However, to better understand the development of LDGs, we need to better constrain this variation. Only then will the drivers of such rate variation - be they abiotic or biotic in nature - become clearer.


Assuntos
Biodiversidade , Planeta Terra , Especiação Genética
3.
Proc Biol Sci ; 291(2019): 20232606, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38503334

RESUMO

The brain is thought to be among the first human organs to decompose after death. The discovery of brains preserved in the archaeological record is therefore regarded as unusual. Although mechanisms such as dehydration, freezing, saponification, and tanning are known to allow for the preservation of the brain on short time scales in association with other soft tissues (≲4000 years), discoveries of older brains, especially in the absence of other soft tissues, are rare. Here, we collated an archive of more than 4400 human brains preserved in the archaeological record across approximately 12 000 years, more than 1300 of which constitute the only soft tissue preserved amongst otherwise skeletonized remains. We found that brains of this type persist on time scales exceeding those preserved by other means, which suggests an unknown mechanism may be responsible for preservation particular to the central nervous system. The untapped archive of preserved ancient brains represents an opportunity for bioarchaeological studies of human evolution, health and disease.


Assuntos
Encéfalo , Sistema Nervoso Central , Humanos , Cabeça
4.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903233

RESUMO

Abiotic niche lability reduces extinction risk by allowing species to adapt to changing environmental conditions in situ. In contrast, species with static niches must keep pace with the velocity of climate change as they track suitable habitat. The rate and frequency of niche lability have been studied on human timescales (months to decades) and geological timescales (millions of years), but lability on intermediate timescales (millennia) remains largely uninvestigated. Here, we quantified abiotic niche lability at 8-ka resolution across the last 700 ka of glacial-interglacial climate fluctuations, using the exceptionally well-known fossil record of planktonic foraminifera coupled with Atmosphere-Ocean Global Climate Model reconstructions of paleoclimate. We tracked foraminiferal niches through time along the univariate axis of mean annual temperature, measured both at the sea surface and at species' depth habitats. Species' temperature preferences were uncoupled from the global temperature regime, undermining a hypothesis of local adaptation to changing environmental conditions. Furthermore, intraspecific niches were equally similar through time, regardless of climate change magnitude on short timescales (8 ka) and across contrasts of glacial and interglacial extremes. Evolutionary trait models fitted to time series of occupied temperature values supported widespread niche stasis above randomly wandering or directional change. Ecotype explained little variation in species-level differences in niche lability after accounting for evolutionary relatedness. Together, these results suggest that warming and ocean acidification over the next hundreds to thousands of years could redistribute and reduce populations of foraminifera and other calcifying plankton, which are primary components of marine food webs and biogeochemical cycles.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Modelos Climáticos , Foraminíferos/fisiologia , Plâncton/fisiologia , Mudança Climática , Ecossistema , Foraminíferos/genética , Fósseis , Humanos , Água do Mar/microbiologia , Temperatura
5.
Glob Chang Biol ; 28(2): 349-361, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558764

RESUMO

Anthropogenic activity is changing Earth's climate and ecosystems in ways that are potentially dangerous and disruptive to humans. Greenhouse gas concentrations in the atmosphere continue to rise, ensuring that these changes will be felt for centuries beyond 2100, the current benchmark for projection. Estimating the effects of past, current, and potential future emissions to only 2100 is therefore short-sighted. Critical problems for food production and climate-forced human migration are projected to arise well before 2100, raising questions regarding the habitability of some regions of the Earth after the turn of the century. To highlight the need for more distant horizon scanning, we model climate change to 2500 under a suite of emission scenarios and quantify associated projections of crop viability and heat stress. Together, our projections show global climate impacts increase significantly after 2100 without rapid mitigation. As a result, we argue that projections of climate and its effects on human well-being and associated governance and policy must be framed beyond 2100.


Assuntos
Mudança Climática , Gases de Efeito Estufa , Efeitos Antropogênicos , Atmosfera , Ecossistema , Humanos
6.
Nature ; 532(7600): 496-9, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26982721

RESUMO

Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica', particularly the 'weird wonders' of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.


Assuntos
Fósseis , Filogenia , Vertebrados/classificação , Nadadeiras de Animais/anatomia & histologia , Animais , Extinção Biológica , Olho/anatomia & histologia , Trato Gastrointestinal/anatomia & histologia , Illinois , Lampreias/classificação , Notocorda/anatomia & histologia , Dente/anatomia & histologia , Vertebrados/anatomia & histologia
7.
Proc Natl Acad Sci U S A ; 116(26): 12895-12900, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31182570

RESUMO

Many higher level avian clades are restricted to Earth's lower latitudes, leading to historical biogeographic reconstructions favoring a Gondwanan origin of crown birds and numerous deep subclades. However, several such "tropical-restricted" clades (TRCs) are represented by stem-lineage fossils well outside the ranges of their closest living relatives, often on northern continents. To assess the drivers of these geographic disjunctions, we combined ecological niche modeling, paleoclimate models, and the early Cenozoic fossil record to examine the influence of climatic change on avian geographic distributions over the last ∼56 million years. By modeling the distribution of suitable habitable area through time, we illustrate that most Paleogene fossil-bearing localities would have been suitable for occupancy by extant TRC representatives when their stem-lineage fossils were deposited. Potentially suitable habitat for these TRCs is inferred to have become progressively restricted toward the tropics throughout the Cenozoic, culminating in relatively narrow circumtropical distributions in the present day. Our results are consistent with coarse-scale niche conservatism at the clade level and support a scenario whereby climate change over geological timescales has largely dictated the geographic distributions of many major avian clades. The distinctive modern bias toward high avian diversity at tropical latitudes for most hierarchical taxonomic levels may therefore represent a relatively recent phenomenon, overprinting a complex biogeographic history of dramatic geographic range shifts driven by Earth's changing climate, variable persistence, and intercontinental dispersal. Earth's current climatic trajectory portends a return to a megathermal state, which may dramatically influence the geographic distributions of many range-restricted extant clades.


Assuntos
Distribuição Animal , Aves/fisiologia , Mudança Climática , Fósseis , Animais , Biomassa
8.
Am Nat ; 196(4): 454-471, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32970459

RESUMO

AbstractReconstructing geographic range sizes from fossil data is a crucial tool in paleoecology, elucidating macroecological and macroevolutionary processes. Studies examining links between range size and extinction risk may also offer a predictive tool for identifying species most vulnerable in the "sixth mass extinction." However, the extent to which paleogeographic ranges can be recorded reliably in the fossil record is unknown. We perform simulation-based extinction experiments to examine (1) the fidelity of paleogeographic range size preservation in deep time, (2) the relative performance of different methods for reconstructing range size, and (3) the reliability of detecting patterns of extinction "selectivity" on range size. Our results suggest both that relative paleogeographic range size can be consistently reconstructed and that selectivity patterns on range size can be preserved under many extinction intensities, even when sedimentary rocks are scarce. By identifying patterns of selectivity across Earth's history, paleontologists can thus augment neontological work that aims to predict and prevent extinctions of living species. Last, we find that introducing "false extinctions" in the fossil record can produce spurious range-selectivity signals. Errors in the temporal ranges of species may pose a larger barrier to reconstructing range size-extinction risk signals than the spatial distribution of fossiliferous sediments.


Assuntos
Extinção Biológica , Fósseis , Filogeografia , Distribuição Animal , Animais , Simulação por Computador , Paleontologia/métodos
9.
Proc Biol Sci ; 287(1929): 20201125, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32546099

RESUMO

The decline in species richness from the equator to the poles is referred to as the latitudinal diversity gradient (LDG). Higher equatorial diversity has been recognized for over 200 years, but the consistency of this pattern in deep time remains uncertain. Examination of spatial biodiversity patterns in the past across different global climate regimes and continental configurations can reveal how LDGs have varied over Earth history and potentially differentiate between suggested causal mechanisms. The Late Permian-Middle Triassic represents an ideal time interval for study, because it is characterized by large-scale volcanic episodes, extreme greenhouse temperatures and the most severe mass extinction event in Earth history. We examined terrestrial and marine tetrapod spatial biodiversity patterns using a database of global tetrapod occurrences. Terrestrial tetrapods exhibit a bimodal richness distribution throughout the Late Permian-Middle Triassic, with peaks in the northern low latitudes and southern mid-latitudes around 20-40° N and 60° S, respectively. Marine reptile fossils are known almost exclusively from the Northern Hemisphere in the Early and Middle Triassic, with highest diversity around 20° N. Reconstructed terrestrial LDGs contrast strongly with the generally unimodal gradients of today, potentially reflecting high global temperatures and prevailing Pangaean super-monsoonal climate system during the Permo-Triassic.


Assuntos
Biodiversidade , Extinção Biológica , Animais , Clima , Mudança Climática , Planeta Terra , Ecossistema , Fósseis , Temperatura Alta , Répteis
10.
Biol Lett ; 16(7): 20200199, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32603646

RESUMO

Analyses of morphological disparity have been used to characterize and investigate the evolution of variation in the anatomy, function and ecology of organisms since the 1980s. While a diversity of methods have been employed, it is unclear whether they provide equivalent insights. Here, we review the most commonly used approaches for characterizing and analysing morphological disparity, all of which have associated limitations that, if ignored, can lead to misinterpretation. We propose best practice guidelines for disparity analyses, while noting that there can be no 'one-size-fits-all' approach. The available tools should always be used in the context of a specific biological question that will determine data and method selection at every stage of the analysis.


Assuntos
Evolução Biológica , Ecologia
11.
Syst Biol ; 67(3): 428-438, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088474

RESUMO

Evolutionary dynamics of abiotic ecological niches across phylogenetic history can shed light on large-scale biogeographic patterns, macroevolutionary rate shifts, and the relative ability of lineages to respond to global change. An unresolved question is how best to represent and reconstruct evolution of these complex traits at coarse spatial scales through time. Studies have approached this question by integrating phylogenetic comparative methods with niche estimates inferred from correlative and other models. However, methods for estimating niches often produce incomplete characterizations, as they are inferred from present-day distributions that may be limited in full expression of the fundamental ecological niche by biotic interactions, dispersal limitations, and the existing set of environmental conditions. Here, we test whether incomplete niche characterizations inherent in most estimates of species' niches bias phylogenetic reconstructions of niche evolution, using simulations of virtual species with known niches. Results establish that incompletely characterized niches inflate estimates of evolutionary change and lead to error in ancestral state reconstructions. Our analyses also provide a potential mechanism to explain the frequent observation that maximum thermal tolerances are more conserved than minimum thermal tolerances: populations and species experience more spatial variation in minimum temperature than in maximum temperature across their distributions and, consequently, may experience stronger diversifying selection for cold tolerance.


Assuntos
Evolução Biológica , Simulação por Computador , Ecossistema , Modelos Biológicos , Meio Ambiente
13.
Proc Biol Sci ; 285(1885)2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135165

RESUMO

Basal metabolic rate (BMR) is posited to be a fundamental control on the structure and dynamics of ecological networks, influencing organism resource use and rates of senescence. Differences in the maintenance energy requirements of individual species therefore potentially predict extinction likelihood. If validated, this would comprise an important link between organismic ecology and macroevolutionary dynamics. To test this hypothesis, the BMRs of organisms within fossil species were determined using body size and temperature data, and considered in the light of species' survival and extinction through time. Our analysis focused on the high-resolution record of Pliocene to recent molluscs (bivalves and gastropods) from the Western Atlantic. Species-specific BMRs were calculated by measuring the size range of specimens from museum collections, determining ocean temperature using the HadCM3 global climate model, and deriving values based on relevant equations. Intriguingly, a statistically significant difference in metabolic rate exists between those bivalve and gastropod taxa that went extinct and those that survived throughout the course of the Neogene. This indicates that there is a scaling up from organismic properties to species survival for these communities. Metabolic rate could therefore represent an important metric for predicting future extinction patterns, with changes in global climate potentially affecting the lifespan of individuals, ultimately leading to the extinction of the species they are contained within. We also find that, at the assemblage level, there are no significant differences in metabolic rates for different time intervals throughout the entire study period. This may suggest that Neogene mollusc communities have remained energetically stable, despite many extinctions.


Assuntos
Metabolismo Basal , Evolução Biológica , Bivalves/fisiologia , Clima , Gastrópodes/fisiologia , Animais , Oceano Atlântico , Canadá , Fósseis , Especificidade da Espécie , Estados Unidos
14.
Am Nat ; 188(2): 149-62, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27420781

RESUMO

We describe a spatially explicit simulation experiment designed to assess relative impacts of macroecological traits on patterns of biological diversification under changing environmental conditions. Using a simulation framework, we assessed impacts of species' niche breadth (i.e., the range of their abiotic tolerances) and dispersal ability on resulting patterns of speciation and extinction and evaluated how these traits, in conjunction with environmental change, shape biological diversification. Simulation results supported both niche breadth and dispersal ability as important drivers of diversification in the face of environmental change, and suggested that the rate of environmental change influences how species interact with the extrinsic environment to generate diversity. Niche breadth had greater effects on speciation and extinction than dispersal ability when climate changed rapidly, whereas dispersal ability effects were elevated when climate changed slowly. Our simulations provide a bottom-up perspective on the generation and maintenance of diversity under climate change, offering a better understanding of potential interactions between species' intrinsic macroecological characteristics and a dynamic extrinsic environment in the process of biological diversification.


Assuntos
Evolução Biológica , Ecossistema , Distribuição Animal , Mudança Climática , Simulação por Computador , Especiação Genética , Geografia , Modelos Biológicos , Dispersão Vegetal , Dinâmica Populacional
15.
BMC Evol Biol ; 14: 195, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25297820

RESUMO

BACKGROUND: Understanding the evolutionary history of morphologically cryptic species complexes is difficult, and made even more challenging when geographic distributions have been modified by human-mediated dispersal. This situation is common in the Mediterranean Basin where, aside from the environmental heterogeneity of the region, protracted human presence has obscured the biogeographic processes that shaped current diversity. Loxosceles rufescens (Araneae, Sicariidae) is an ideal example: native to the Mediterranean, the species has dispersed worldwide via cohabitation with humans. A previous study revealed considerable molecular diversity, suggesting cryptic species, but relationships among lineages did not correspond to geographic location. RESULTS: Delimitation analyses on cytochrome c oxidase subunit I identified 11 different evolutionary lineages, presenting two contrasting phylogeographic patterns: (1) lineages with well-structured populations in Morocco and Iberia, and (2) lineages lacking geographic structure across the Mediterranean Basin. Dating analyses placed main diversification events in the Pleistocene, and multiple Pleistocene refugia, identified using ecological niche modeling (ENM), are compatible with allopatric differentiation of lineages. Human-mediated transportation appears to have complicated the current biogeography of this medically important and synanthropic spider. CONCLUSIONS: We integrated ecological niche models with phylogeographic analyses to elucidate the evolutionary history of L. rufescens in the Mediterranean Basin, with emphasis on the origins of mtDNA diversity. We found support for the hypothesis that northern Africa was the center of origin for L. rufescens, and that current genetic diversity originated in allopatry, likely promoted by successive glaciations during the Pleistocene. We corroborated the scenario of multiple refugia within the Mediterranean, principally in northern Africa, combining results from eight atmosphere-ocean general circulation models (AOGCMs) with two different refugium-delimitation methodologies. ENM results were useful for providing general views of putative refugia, with fine-scale details depending on the level of stringency applied for agreement among models.


Assuntos
Modelos Biológicos , Aranhas/genética , África do Norte , Animais , Evolução Biológica , DNA Mitocondrial/genética , Ecologia , Variação Genética , Haplótipos , Filogenia , Filogeografia
16.
Science ; 383(6687): 1130-1134, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452067

RESUMO

Anthropogenic climate change is increasing rapidly and already impacting biodiversity. Despite its importance in future projections, understanding of the underlying mechanisms by which climate mediates extinction remains limited. We present an integrated approach examining the role of intrinsic traits versus extrinsic climate change in mediating extinction risk for marine invertebrates over the past 485 million years. We found that a combination of physiological traits and the magnitude of climate change is necessary to explain marine invertebrate extinction patterns. Our results suggest that taxa previously identified as extinction resistant may still succumb to extinction if the magnitude of climate change is great enough.


Assuntos
Mudança Climática , Extinção Biológica , Invertebrados , Animais , Organismos Aquáticos , Biodiversidade
17.
Nat Ecol Evol ; 8(4): 729-738, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374186

RESUMO

Lengthy debate has surrounded the theoretical and empirical science of whether climatic niche evolution is related to increased or decreased rates of biological diversification. Because species can persist for thousands to millions of years, these questions cross broad scales of time and space. Thus, short-term experiments may not provide comprehensive understanding of the system, leading to the emergence of contrasting opinions: niche evolution may increase diversity by allowing species to explore and colonize new geographic areas across which they could speciate; or, niche conservatism might augment biodiversity by supporting isolation of populations that may then undergo allopatric speciation. Here, we use a simulation approach to test how biological diversification responds to different rates and modes of niche evolution. We find that niche conservatism promotes biological diversification, whereas labile niches-whether adapting to the conditions available or changing randomly-generally led to slower diversification rates. These novel results provide a framework for understanding how Earth-life interactions produced such a diverse biota.


Assuntos
Evolução Biológica , Mudança Climática , Filogenia , Ecossistema , Biodiversidade
18.
Proc Natl Acad Sci U S A ; 107(16): 7329-34, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368427

RESUMO

Amber is of great paleontological importance because it preserves a diverse array of organisms and associated remains from different habitats in and close to the amber-producing forests. Therefore, the discovery of amber inclusions is important not only for tracing the evolutionary history of lineages with otherwise poor fossil records, but also for elucidating the composition, diversity, and ecology of terrestrial paleoecosystems. Here, we report a unique find of African amber with inclusions, from the Cretaceous of Ethiopia. Ancient arthropods belonging to the ants, wasps, thrips, zorapterans, and spiders are the earliest African records of these ecologically important groups and constitute significant discoveries providing insight into the temporal and geographical origins of these lineages. Together with diverse microscopic inclusions, these findings reveal the interactions of plants, fungi and arthropods during an epoch of major change in terrestrial ecosystems, which was caused by the initial radiation of the angiosperms. Because of its age, paleogeographic location and the exceptional preservation of the inclusions, this fossil resin broadens our understanding of the ecology of Cretaceous woodlands.


Assuntos
Âmbar , Fósseis , África , Animais , Formigas , Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Etiópia , Feminino , Geografia , Masculino , Modelos Biológicos , Paleontologia/métodos
19.
Trends Ecol Evol ; 38(12): 1165-1176, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696719

RESUMO

Measurement theory, a branch of applied mathematics, offers guiding principles for extracting meaning from empirical observations and is applicable to any science involving measurements. Measurement theory is highly relevant in paleobiology because statistical approaches assuming ratio-scaled variables are commonly used on data belonging to nominal and ordinal scale types. We provide an informal introduction to representational measurement theory and argue for its importance in robust scientific inquiry. Although measurement theory is widely applicable in paleobiology research, we use the study of disparity to illustrate measurement theoretical challenges in the quantitative study of the fossil record. Respecting the inherent properties of different measurements enables meaningful inferences about evolutionary and ecological processes from paleontological data.


Assuntos
Evolução Biológica , Paleontologia , Fósseis
20.
Trends Ecol Evol ; 37(10): 851-860, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35691773

RESUMO

Geographic ranges are a fundamental unit of biogeography and macroecology. Increasingly, paleontologists and ecologists alike are reconstructing geographic ranges of species from fossils, in order to understand the long-term processes governing biogeographic and macroevolutionary patterns. As these reconstructions have become increasingly common, uncertainty has arisen over the equivalency of paleo-ranges and modern ranges. Here, we argue geographic ranges are time-averaged at all temporal scales, and reflect the biotic and abiotic processes operating across the equivalent range of time and space scales. This conceptual framework integrates the study of geographic ranges reconstructed using modern and ancient data, and highlights the potential for ranges to illuminate processes responsible for diversity patterns over intervals spanning days to tens of millions of years of Earth history.


Assuntos
Evolução Biológica , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA