Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Xenobiotica ; 52(8): 770-785, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36314242

RESUMO

 The therapeutic concept of antibody drug conjugates (ADCs) is to selectively target tumour cells with small molecule cytotoxic drugs to maximise cell kill benefit and minimise healthy tissue toxicity.An ADC generally consists of an antibody that targets a protein on the surface of tumour cells chemically linked to a warhead small molecule cytotoxic drug.To deliver the warhead to the tumour cell, the antibody must bind to the target protein and in general be internalised into the cell. Following internalisation, the cytotoxic agent can be released in the endosomal or lysosomal compartment (via different mechanisms). Diffusion or transport out of the endosome or lysosome allows the cytotoxic drug to express its cell-killing pharmacology. Alternatively, some ADCs (e.g. EDB-ADCs) rely on extracellular cleavage releasing membrane permeable warheads.One potentially important aspect of the ADC mechanism is the 'bystander effect' whereby the cytotoxic drug released in the targeted cell can diffuse out of that cell and into other (non-target expressing) tumour cells to exert its cytotoxic effect. This is important as solid tumours tend to be heterogeneous and not all cells in a tumour will express the targeted protein.The combination of large and small molecule aspects in an ADC poses significant challenges to the disposition scientist in describing the ADME properties of the entire molecule.This article will review the ADC landscape and the ADME properties of successful ADCs, with the aim of outlining best practice and providing a perspective of how the field can further facilitate the discovery and development of these important therapeutic modalities.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Antineoplásicos/farmacocinética , Imunoconjugados/farmacocinética , Neoplasias/tratamento farmacológico
2.
Clin Endocrinol (Oxf) ; 91(1): 209-218, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004517

RESUMO

BACKGROUND AND OBJECTIVES: Critically ill patients present reduced endogenous melatonin blood levels, and they might benefit from its exogenous supplementation. The aim of this research was to evaluate the feasibility of different routes of administration and drug formulations of melatonin. The efficiency of absorption was assessed as well as the adequacy in achieving and maintaining the physiological nocturnal blood peak. METHODS: Twenty-one high-risk critically ill patients were randomly assigned to receive melatonin either: (a) per os, as a standard tablet (ST-OS), (b) per os, as a suspension in solid lipid nanoparticles (SLN-OS) or c) transdermal (TD), by applying a jellified melatonin microemulsion (µE) on the skin (µE-TD). SLN-OS and µE-TD were lipid-based colloidal systems. The endogenous melatonin blood values were observed for 24 hours; subsequently, melatonin 3 mg was administered and pharmacokinetics was studied for 24 hours further. RESULTS: In both groups that received ST-OS and SLN-OS, the median time-to-peak blood concentration was 0.5 hours; however, the area under the curve (AUC) after administration of SLN-OS was significantly higher than after ST-OS (157386 [65732-193653] vs 44441 [22319-90705] pg/mL*hours, P = 0.048). µE-TD presented a delayed time-to-peak blood concentration (4 hours), a lower bioavailability (AUC: 3142 [1344-14573] pg/mL*hours) and reached pharmacological peak concentration (388 [132-1583] pg/mL). CONCLUSIONS: SLN-melatonin enterally administered offers favourable pharmacokinetics in critically ill patients, with higher bioavailability with respect to the standard formulation; µE-TD provided effective pharmacological blood levels, with a time-concentration profile more similar to the physiological melatonin pattern.


Assuntos
Melatonina/sangue , Melatonina/farmacocinética , Idoso , Idoso de 80 Anos ou mais , Coloides/química , Estado Terminal , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade
3.
Mol Cancer Ther ; 22(2): 254-263, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722141

RESUMO

Antibody-drug conjugates (ADC) delivering pyrrolobenzodiazepine (PBD) DNA cross-linkers are currently being evaluated in clinical trials, with encouraging results in Hodgkin and non-Hodgkin lymphomas. The first example of an ADC delivering a PBD DNA cross-linker (loncastuximab tesirine) has been recently approved by the FDA for the treatment of relapsed and refractory diffuse large B-cell lymphoma. There has also been considerable interest in mono-alkylating PBD analogs. We conducted a head-to-head comparison of a conventional PBD bis-imine and a novel PBD mono-imine. Key Mitsunobu chemistry allowed clean and convenient access to the mono-imine class. Extensive DNA-binding studies revealed that the mono-imine mediated a type of DNA interaction that is described as "pseudo cross-linking," as well as alkylation. The PBD mono-imine ADC demonstrated robust antitumor activity in mice bearing human tumor xenografts at doses 3-fold higher than those that were efficacious for the PBD bis-imine ADC. A single-dose toxicology study in rats demonstrated that the MTD of the PBD mono-alkylator ADC was approximately 3-fold higher than that of the ADC bearing a bis-imine payload, suggesting a comparable therapeutic index for this molecule. However, although both ADCs caused myelosuppression, renal toxicity was observed only for the bis-imine, indicating possible differences in toxicologic profiles that could influence tolerability and therapeutic index. These data show that mono-amine PBDs have physicochemical and pharmacotoxicologic properties distinct from their cross-linking analogs and support their potential utility as a novel class of ADC payload.


Assuntos
Imunoconjugados , Linfoma não Hodgkin , Humanos , Animais , Camundongos , Ratos , Alquilação , DNA , Iminas , Imunoconjugados/farmacologia
4.
ADMET DMPK ; 7(1): 44-59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-35350746

RESUMO

The benefits of melatonin on human body are drawing increasing attention from several researchers in different fields. While its role as cure for sleep disturbances (e.g., jet lag, insomnia) is well documented and established, new functions in physiological and pathophysiological processes are emerging. To investigate these effects, there is need for the characterization of melatonin transport processes in the body and resulting pharmacokinetics. Although recent works propose physiologically-based pharmacokinetic modelling of melatonin, no work has yet highlighted the potential of PBPK simulations to shed light on melatonin pharmacokinetic aspects and discrimination among administration routes. This paper presents, validates, and discusses a versatile PBPK model featuring different ways of administration and compares the resulting pharmacokinetic profiles of intravenous, oral, and transdermal administration, with the goal of understanding which is the optimal route to achieve either physiological and/or supraphysiological melatonin levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA