Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Commun Signal ; 21(1): 297, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864211

RESUMO

BACKGROUND: E. coli O83 (Colinfant Newborn) is a Gram-negative (G-) probiotic bacterium used in the clinic. When administered orally, it reduces allergic sensitisation but not allergic asthma. Intranasal administration offers a non-invasive and convenient delivery method. This route bypasses the gastrointestinal tract and provides direct access to the airways, which are the target of asthma prevention. G- bacteria such as E. coli O83 release outer membrane vesicles (OMVs) to communicate with the environment. Here we investigate whether intranasally administered E. coli O83 OMVs (EcO83-OMVs) can reduce allergic airway inflammation in mice. METHODS: EcO83-OMVs were isolated by ultracentrifugation and characterised their number, morphology (shape and size), composition (proteins and lipopolysaccharide; LPS), recognition by innate receptors (using transfected HEK293 cells) and immunomodulatory potential (in naïve splenocytes and bone marrow-derived dendritic cells; BMDCs). Their allergy-preventive effect was investigated in a mouse model of ovalbumin-induced allergic airway inflammation. RESULTS: EcO83-OMVs are spherical nanoparticles with a size of about 110 nm. They contain LPS and protein cargo. We identified a total of 1120 proteins, 136 of which were enriched in OMVs compared to parent bacteria. Proteins from the flagellum dominated. OMVs activated the pattern recognition receptors TLR2/4/5 as well as NOD1 and NOD2. EcO83-OMVs induced the production of pro- and anti-inflammatory cytokines in splenocytes and BMDCs. Intranasal administration of EcO83-OMVs inhibited airway hyperresponsiveness, and decreased airway eosinophilia, Th2 cytokine production and mucus secretion. CONCLUSIONS: We demonstrate for the first time that intranasally administered OMVs from probiotic G- bacteria have an anti-allergic effect. Our study highlights the advantages of OMVs as a safe platform for the prophylactic treatment of allergy. Video Abstract.


Assuntos
Asma , Vesículas Extracelulares , Hipersensibilidade , Probióticos , Humanos , Animais , Camundongos , Escherichia coli , Lipopolissacarídeos , Células HEK293 , Hipersensibilidade/prevenção & controle , Hipersensibilidade/metabolismo , Imunidade Inata , Asma/metabolismo , Inflamação/metabolismo , Vesículas Extracelulares/metabolismo , Probióticos/farmacologia
2.
Semin Immunol ; 30: 12-27, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28807539

RESUMO

Immunity is established by a fine balance to discriminate between self and non-self. In addition, mucosal surfaces have the unique ability to establish and maintain a state of tolerance also against non-self constituents such as those represented by the large numbers of commensals populating mucosal surfaces and food-derived or air-borne antigens. Recent years have seen a dramatic expansion in our understanding of the basic mechanisms and the involved cellular and molecular players orchestrating mucosal tolerance. As a direct outgrowth, promising prophylactic and therapeutic models for mucosal tolerance induction against usually innocuous antigens (derived from food and aeroallergen sources) have been developed. A major theme in the past years was the introduction of improved formulations and novel adjuvants into such allergy vaccines. This review article describes basic mechanisms of mucosal tolerance induction and contrasts the peculiarities but also the interdependence of the gut and respiratory tract associated lymphoid tissues in that context. Particular emphasis is put on delineating the current prophylactic and therapeutic strategies to study and improve mucosal tolerance induction in allergy.


Assuntos
Alérgenos/imunologia , Dessensibilização Imunológica/métodos , Hipersensibilidade/imunologia , Tolerância Imunológica , Intestinos/imunologia , Mucosa/imunologia , Sistema Respiratório/imunologia , Alérgenos/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Hipersensibilidade/terapia , Imunidade nas Mucosas , Camundongos
3.
J Biol Chem ; 294(4): 1126-1127, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30807998

RESUMO

Toxoplasma gondii is an intracellular parasite that is highly prevalent within human populations. Its genome encodes a range of enzymes involved in glycan biosynthesis and metabolism. A new study presents a library of CRISPR/Cas9-based glyco-relevant gene knockouts and their examination in glycomic and functional assays. This new resource can pave the way for a better understanding of the role of carbohydrates in infection and immunomodulation by this significant protozoan parasite.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Polissacarídeos/genética , Toxoplasma/genética , Técnicas de Inativação de Genes , Biblioteca Gênica , Glicômica , Polissacarídeos/metabolismo , Toxoplasma/metabolismo
7.
Wien Med Wochenschr ; 164(19-20): 382-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25281198

RESUMO

PURPOSE OF REVIEW: In order to survive in their host, parasitic worms (helminths) have evolved cunning strategies to manipulate the host immune system, some of which may lead to protection from immune dysregulatory diseases such as allergy. Thus, loss of exposure to helminths due to a highly hygienic life style might have contributed to the fact that living in an industrialized country is being associated with an increased prevalence of allergic diseases. However, it must be pointed out that certain helminth infections can in fact induce an allergic phenotype. Factors such as different parasite species, timing of infection in relation to allergic sensitization, or duration and intensity of infection may influence the association between helminth infections and the development or clinical course of allergic disease. In the present article, we review studies that have explored the interaction between helminth infections and allergy in epidemiological and experimental studies. Furthermore, the possibility of using helminths or helminth-derived molecules for the treatment of allergic diseases is discussed with a focus on evidence from clinical trials. RECENT FINDINGS: During the past 10 years, many exciting and important studies have found that certain helminth infections protect against the development of allergic diseases. Not surprisingly, several clinical trials investigated the effects of deliberate exposure to parasites like porcine whipworm (Trichuris suis) or hookworm (Necator americanus) to develop "helminth therapies". Although they proved to be a safe option to control aberrant inflammation, the final goal is to identify the parasite-derived immunnomodulatory molecules responsible for protective effects.


Assuntos
Helmintíase/imunologia , Helmintos/imunologia , Hipersensibilidade/imunologia , Animais , Helmintíase/prevenção & controle , Interações Hospedeiro-Parasita/imunologia , Humanos , Higiene/normas , Hipersensibilidade/terapia , Imunomodulação/imunologia , Estilo de Vida
8.
Nutrients ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892639

RESUMO

Compared to the general population, patients with inflammatory bowel disease (IBD) are less likely to be vaccinated, putting them at an increased risk of vaccine-preventable illnesses. This risk is further compounded by the immunosuppressive therapies commonly used in IBD management. Therefore, developing new treatments for IBD that maintain immune function is crucial, as successful management can lead to better vaccination outcomes and overall health for these patients. Here, we investigate the potential of recombinant banana lectin (rBanLec) as a supporting therapeutic measure to improve IBD control and possibly increase vaccination rates among IBD patients. By examining the therapeutic efficacy of rBanLec in a murine model of experimental colitis, we aim to lay the foundation for its application in improving vaccination outcomes. After inducing experimental colitis in C57BL/6 and BALB/c mice with 2,4,6-trinitrobenzene sulfonic acid, we treated animals orally with varying doses of rBanLec 0.1-10 µg/mL (0.01-1 µg/dose) during the course of the disease. We assessed the severity of colitis and rBanLec's modulation of the immune response compared to control groups. rBanLec administration resulted in an inverse dose-response reduction in colitis severity (less pronounced weight loss, less shortening of the colon) and an improved recovery profile, highlighting its therapeutic potential. Notably, rBanLec-treated mice exhibited significant modulation of the immune response, favoring anti-inflammatory pathways (primarily reduction in a local [TNFα]/[IL-10]) crucial for effective vaccination. Our findings suggest that rBanLec could mitigate the adverse effects of immunosuppressive therapy on vaccine responsiveness in IBD patients. By improving the underlying immune response, rBanLec may increase the efficacy of vaccinations, offering a dual benefit of disease management and prevention of vaccine-preventable illnesses. Further studies are required to translate these findings into clinical practice.


Assuntos
Colite , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Musa , Animais , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos , Musa/química , Colite/tratamento farmacológico , Colite/imunologia , Colite/prevenção & controle , Lectinas de Plantas/farmacologia , Ácido Trinitrobenzenossulfônico , Agentes de Imunomodulação/farmacologia , Feminino , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Masculino
9.
J Extracell Vesicles ; 12(1): e12298, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604533

RESUMO

Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved.


Assuntos
Vesículas Extracelulares , Helmintos , Animais , Humanos , Vesículas Extracelulares/fisiologia , Reprodutibilidade dos Testes , Mamíferos
10.
Biomolecules ; 10(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708591

RESUMO

The unabated global increase of allergic patients leads to an unmet need for rapid and inexpensive tools for the diagnosis of allergies and for monitoring the outcome of allergen-specific immunotherapy (SIT). In this proof-of-concept study, we investigated the potential of Fourier-Transform Infrared (FTIR) spectroscopy, a high-resolution and cost-efficient biophotonic method with high throughput capacities, to detect characteristic alterations in serum samples of healthy, allergic, and SIT-treated mice and humans. To this end, we used experimental models of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific tolerance induction in BALB/c mice. Serum collected before and at the end of the experiment was subjected to FTIR spectroscopy. As shown by our study, FTIR spectroscopy, combined with deep learning, can discriminate serum from healthy, allergic, and tolerized mice, which correlated with immunological data. Furthermore, to test the suitability of this biophotonic method for clinical diagnostics, serum samples from human patients were analyzed by FTIR spectroscopy. In line with the results from the mouse models, machine learning-assisted FTIR spectroscopy allowed to discriminate sera obtained from healthy, allergic, and SIT-treated humans, thereby demonstrating its potential for rapid diagnosis of allergy and clinical therapeutic monitoring of allergic patients.


Assuntos
Dessensibilização Imunológica , Hipersensibilidade/sangue , Hipersensibilidade/terapia , Soro/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Hipersensibilidade/diagnóstico , Aprendizado de Máquina , Camundongos , Camundongos Endogâmicos BALB C , Resultado do Tratamento
11.
Front Immunol ; 11: 612775, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679699

RESUMO

A steady rise in the number of poly-sensitized patients has increased the demand for effective prophylactic strategies against multi-sensitivities. Probiotic bacteria have been successfully used in clinics and experimental models to prevent allergic mono-sensitization. In the present study, we have investigated whether probiotic bacteria could prevent poly-sensitization by imprinting on the immune system early in life. We used two recombinant variants of probiotic Escherichia coli Nissle 1917 (EcN): i) EcN expressing birch and grass pollen, poly-allergen chimera construct (EcN-Chim), and ii) an "empty" EcN without allergen expression (EcN-Ctrl). Conventional mice (CV) were treated with either EcN-Chim or EcN-Ctrl in the last week of the gestation and lactation period. Gnotobiotic mice received one oral dose of either EcN-Chim or EcN-Ctrl before mating. The offspring from both models underwent systemic allergic poly-sensitization and intranasal challenge with recombinant birch and grass pollen allergens (rBet v 1, rPhl p 1, and rPhl p 5). In the CV setting, the colonization of offspring via treatment of mothers reduced allergic airway inflammation (AAI) in offspring compared to poly-sensitized controls. Similarly, in a gnotobiotic model, AAI was reduced in EcN-Chim and EcN-Ctrl mono-colonized offspring. However, allergy prevention was more pronounced in the EcN-Ctrl mono-colonized offspring as compared to EcN-Chim. Mono-colonization with EcN-Ctrl was associated with a shift toward mixed Th1/Treg immune responses, increased expression of TLR2 and TLR4 in the lung, and maintained levels of zonulin-1 in lung epithelial cells as compared to GF poly-sensitized and EcN-Chim mono-colonized mice. This study is the first one to establish the model of allergic poly-sensitization in gnotobiotic mice. Using two different settings, gnotobiotic and conventional mice, we demonstrated that an early life intervention with the EcN without expressing an allergen is a powerful strategy to prevent poly-sensitization later in life.


Assuntos
Células Epiteliais/imunologia , Escherichia coli/imunologia , Homeostase/imunologia , Hipersensibilidade/imunologia , Sistema Imunitário/imunologia , Alérgenos/imunologia , Animais , Antígenos de Plantas/imunologia , Betula/imunologia , Feminino , Vida Livre de Germes/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Poaceae/imunologia , Pólen/imunologia , Probióticos/administração & dosagem
12.
Front Immunol ; 11: 612766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33776987

RESUMO

Background: The hygiene hypothesis suggests a link between parasitic infections and immune disorders, such as allergic diseases. We previously showed that infection with Toxoplasma gondii or systemic application of T. gondii tachyzoites lysate antigen (TLA) in a prophylactic, but not therapeutic protocol, prevented allergic airway inflammation in mice. Here we tested the effect of prophylactic and therapeutic application of TLA via the mucosal route. Methods: Mice were intranasally treated with TLA either i) prior to sensitization, ii) during sensitization and challenge, or iii) after sensitization with ovalbumin (OVA). Recruitment of inflammatory cells to the lung, cytokine levels in restimulated lung and spleen cell cultures as well as levels of OVA-specific antibodies in serum were measured. In parallel, the effect of native TLA, heat-inactivated (hiTLA) or deglycosylated TLA (dgTLA) on sensitized splenocytes was evaluated ex vivo. Results: When applied together with OVA i) during systemic sensitization and local challenge or ii) exclusively during local challenge, TLA reduced infiltration of eosinophils into the lung, OVA-specific type 2 cytokines in restimulated lung cell cultures, and partially, type 2 cytokines in restimulated spleen cell cultures in comparison to allergic controls. No beneficial effect was observed when TLA was applied prior to the start of sensitization. Analysis of epitope sugars on TLA indicated a high abundance of mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. Deglycosylation of TLA, but not heat-inactivation, abolished the potential of TLA to reduce type 2 responses ex vivo, suggesting a significant role of carbohydrates in immunomodulation. Conclusion: We showed that mucosal application of TLA reduced the development of experimental allergy in mice. The beneficial effects depended on the timing of the application in relation to the time point of sensitization. Not only co-application, but also therapy in sensitized/allergic animals with native TLA reduced local allergic responses. Furthermore, we show that TLA is highly glycosylated and glycoconjugates seem to play a role in anti-allergic effects. In summary, given the powerful modulatory effect that TLA exhibits, understanding its exact mechanisms of action may lead to the development of novel immunomodulators in clinical application.


Assuntos
Carboidratos/imunologia , Hipersensibilidade/imunologia , Pneumopatias/imunologia , Mucosa Respiratória/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Alérgenos/imunologia , Animais , Antígenos de Protozoários/imunologia , Linhagem Celular , Chlorocebus aethiops , Citocinas/imunologia , Feminino , Hipersensibilidade/parasitologia , Fatores Imunológicos/imunologia , Pulmão/imunologia , Pulmão/parasitologia , Pneumopatias/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Mucosa Respiratória/parasitologia , Baço/imunologia , Baço/parasitologia , Toxoplasmose/parasitologia , Células Vero
13.
Vaccines (Basel) ; 8(4)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271962

RESUMO

Vaccines can have heterologous effects on the immune system, i.e., effects other than triggering an immune response against the disease targeted by the vaccine. We investigated whether monoclonal antibodies (mAbs) specific for tetanus could cross-react with Chlamydia and confer heterologous protection against chlamydial infection. The capability of two tetanus-specific mAbs, namely mAb26 and mAb51, to prevent chlamydial infection has been assessed: (i) in vitro, by performing a neutralization assay using human conjunctival epithelial (HCjE) cells infected with Chlamydia trachomatis serovar B, and (ii) in vivo, by using a guinea pig model of Chlamydiacaviae-induced inclusion conjunctivitis. The mAb26 has been superior in comparison with mAb51 in the prevention of chlamydial infection in HCjE cells. The mAb26 has conferred ≈40% inhibition of the infection, compared to less than 5% inhibition in the presence of the mAb51. In vivo, mAb26 significantly diminished ocular pathology intensity in guinea pigs infected with C. caviae compared to either the mAb51-treated or sham-treated guinea pigs. Our data provide insights that tetanus immunization generates antibodies which induce heterologous chlamydial immunity and promote protection beyond the intended target pathogen.

14.
Front Immunol ; 10: 205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809227

RESUMO

Background: Mucosal mast cells (MC) are key players in IgE-mediated food allergy (FA). The evidence on the interaction between gut microbiota, MC and susceptibility to FA is contradictory. Objective: We tested the hypothesis that commensal bacteria are essential for MC migration to the gut and their maturation impacting the susceptibility to FA. Methods: The development and severity of FA symptoms was studied in sensitized germ-free (GF), conventional (CV), and mice mono-colonized with L. plantarum WCFS1 or co-housed with CV mice. MC were phenotypically and functionally characterized. Results: Systemic sensitization and oral challenge of GF mice with ovalbumin led to increased levels of specific IgE in serum compared to CV mice. Remarkably, despite the high levels of sensitization, GF mice did not develop diarrhea or anaphylactic hypothermia, common symptoms of FA. In the gut, GF mice expressed low levels of the MC tissue-homing markers CXCL1 and CXCL2, and harbored fewer MC which exhibited lower levels of MC protease-1 after challenge. Additionally, MC in GF mice were less mature as confirmed by flow-cytometry and their functionality was impaired as shown by reduced edema formation after injection of degranulation-provoking compound 48/80. Co-housing of GF mice with CV mice fully restored their susceptibility to develop FA. However, this did not occur when mice were mono-colonized with L. plantarum. Conclusion: Our results demonstrate that microbiota-induced maturation and gut-homing of MC is a critical step for the development of symptoms of experimental FA. This new mechanistic insight into microbiota-MC-FA axis can be exploited in the prevention and treatment of FA in humans.


Assuntos
Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Microbiota , Animais , Biomarcadores , Degranulação Celular/genética , Degranulação Celular/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipersensibilidade Alimentar/patologia , Microbioma Gastrointestinal , Vida Livre de Germes , Metagenoma , Metagenômica/métodos , Camundongos , Microbiota/imunologia , RNA Ribossômico 16S
16.
Int J Parasitol ; 37(1): 97-109, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17087964

RESUMO

The parasitic helminth Toxocara canis is a widely distributed nematode of mammals. Larval parasites, which infect a wide range of hosts including mice and humans, export glycosylated macromolecules bearing novel methylated oligosaccharide structures, similar to the mammalian blood group antigen H but bearing one or two O-methylated substitutions on the terminal fucose and subterminal galactose residues. We have studied the reactivity of synthetic forms of these glycans to parasite-specific antibodies and mammalian immune system lectins. Murine antibodies, generated to T. canis infection, predominantly recognise the mono-O-methylated form with the beta-configuration of the GalNAc residue (MoMbeta), and antibodies are entirely IgM isotype. The mAb Tcn-2 reproduces this pattern, and shows little reactivity to either the alpha isomer (MoMalpha) or the di-O-methylated form (DiM). Antibodies generated to helminth infections other than T. canis were unreactive with the glycans, except antibodies to other members of the Toxocara genus. Hence, the carbohydrate structures represent immunogenic, genus-specific antigens. Antibodies from human toxocariasis patients are reactive with the same sugars, although preferentially towards DiM. Sera from unrelated helminth infections do not react, confirming the status of these structures as Toxocara-specific glycans. The human dendritic cell lectin, DC-SIGN, was found to bind both Toxocara excretory/secretory products and mammalian blood group antigen H3. However, DC-SIGN did not bind the synthetic glycans, indicating additional non-methylated carbohydrates may also play a role in the interaction between T. canis and its host.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Polissacarídeos/imunologia , Toxocara canis/imunologia , Toxocaríase/imunologia , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Moléculas de Adesão Celular/imunologia , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Feminino , Helmintíase/imunologia , Temperatura Alta , Humanos , Imunoglobulina M/imunologia , Lectinas/imunologia , Lectinas Tipo C/imunologia , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Oligossacarídeos/imunologia , Receptores de Superfície Celular/imunologia
18.
PLoS One ; 12(1): e0167786, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28052076

RESUMO

Germ-free animals have been used to define the vital role of commensal bacteria on the maturation of the host immune system. However, the role of bacterial residues in diet in this setting is poorly understood. Here we investigated the effect of bacterial contamination in sterile diet on the level of allergic sensitization in germ-free mice. Sterile grain-based diets ST1 and R03 were tested for the level of bacterial contamination. ST1 contained higher amount of bacterial DNA, approximately ten times more endotoxin, and induced higher, TLR4-dependent, cytokine production in dendritic cells compared to R03. In a germ-free mouse model of sensitization to the major birch pollen allergen Bet v 1, feeding on ST1 for at least two generations was associated with decreased production of allergen-specific IgE and IgG1 antibodies in sera in comparison to R03. Furthermore, reduced levels of allergen-specific and ConA-induced cytokines IL-4, IL-5 and IL-13 accompanied by increased levels of IFN-γ were detected in splenocytes cultures of these mice. Our results show that contamination of experimental diet with bacterial residues, such as endotoxin, significantly affects the development of allergic sensitization in germ-free mice. Therefore, careful selection of sterile food is critical for the outcomes of germ-free or gnotobiotic experimental models of immune-deviated diseases.


Assuntos
Dieta , Endotoxinas/toxicidade , Hipersensibilidade/imunologia , Imunização , Animais , Antígenos de Plantas/imunologia , Cruzamento , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/biossíntese , Contaminação por DNA , DNA Bacteriano/análise , Células Dendríticas/efeitos dos fármacos , Sistema Digestório/imunologia , Epitopos/imunologia , Vida Livre de Germes , Células HEK293 , Humanos , Hipersensibilidade/patologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Ligantes , Camundongos Endogâmicos BALB C , Mitógenos/farmacologia , Baço/patologia , Receptor 4 Toll-Like/metabolismo
19.
Sci Rep ; 7(1): 15211, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123241

RESUMO

Epidemiological and experimental studies have shown an inverse relationship between infections with certain parasites and a reduced incidence of allergic diseases. We and others have shown that infection with Toxoplasma gondii prevents the development of allergy in mice. To establish whether this beneficial effect could be recapitulated by soluble products of this parasite, we tested an extract derived from T. gondii tachyzoites. Immunization of BALB/c mice with tachyzoites lysate antigen (TLA) elicited mixed Th1/Th2 responses. When TLA was applied together with the sensitizing ovalbumin (OVA), the development of allergic airway inflammation was reduced, with decreased airway hyperresponsiveness associated with reduced peribronchial and perivascular cellular infiltration, reduced production of OVA-specific Th2 cytokines in lungs and spleens and reduced levels of serum OVA-specific IgG1 as well as IgE-dependent basophil degranulation. Of note, TLA retained its immunomodulatory properties, inducing high levels of IL-6, TNFα, IL-10 and IL-12p70 in bone marrow-derived dendritic cells after heat-inactivation or proteinase K-treatment for disruption of proteins, but not after sodium metaperiodate-treatment that degrades carbohydrate structures, suggesting that carbohydrates may play a role in immunomodulatory properties of TLA. Here we show that extracts derived from parasites may replicate the benefits of parasitic infection, offering new therapies for immune-mediated disorders.


Assuntos
Asma/prevenção & controle , Extratos Celulares/farmacologia , Fatores Imunológicos/farmacologia , Toxoplasma/química , Alérgenos/administração & dosagem , Animais , Asma/patologia , Extratos Celulares/isolamento & purificação , Citocinas/análise , Modelos Animais de Doenças , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Fatores Imunológicos/isolamento & purificação , Pulmão/patologia , Camundongos Endogâmicos BALB C , Ovalbumina/administração & dosagem , Baço/patologia , Células Th1/imunologia , Células Th2/imunologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA