Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(17): 170401, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332243

RESUMO

The operator space entanglement entropy, or simply "operator entanglement" (OE), is an indicator of the complexity of quantum operators and of their approximability by matrix product operators (MPOs). We study the OE of the density matrix of 1D many-body models undergoing dissipative evolution. It is expected that, after an initial linear growth reminiscent of unitary quench dynamics, the OE should be suppressed by dissipative processes as the system evolves to a simple stationary state. Surprisingly, we find that this scenario breaks down for one of the most fundamental dissipative mechanisms: dephasing. Under dephasing, after the initial "rise and fall," the OE can rise again, increasing logarithmically at long times. Using a combination of MPO simulations for chains of infinite length and analytical arguments valid for strong dephasing, we demonstrate that this growth is inherent to a U(1) conservation law. We argue that in an XXZ spin model and a Bose-Hubbard model the OE grows universally as 1/4log_{2}t at long times and as 1/2log_{2}t for a Fermi-Hubbard model. We trace this behavior back to anomalous classical diffusion processes.

2.
J Chem Phys ; 154(5): 054104, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33557545

RESUMO

We study a simple model for photoinduced electron transfer reactions for the case of many donor-acceptor pairs that are collectively and homogeneously coupled to a photon mode of a cavity. We describe both coherent and dissipative collective effects resulting from this coupling within the framework of a quantum optics Lindblad master equation. We introduce a method to derive an effective rate equation for electron transfer by adiabatically eliminating donor and acceptor states and the cavity mode. The resulting rate equation is valid for both weak and strong coupling to the cavity mode and describes electronic transfer through both the cavity-coupled bright states and the uncoupled dark states. We derive an analytic expression for the instantaneous electron transfer rate that depends non-trivially on the time-varying number of pairs in the ground state. We find that under proper resonance conditions, and in the presence of an incoherent drive, reaction rates can be enhanced by the cavity. This enhancement persists, and can even be largest, in the weak light-matter coupling regime. We discuss how the cavity effect is relevant for realistic experiments.

3.
Phys Rev Lett ; 125(7): 073601, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857558

RESUMO

We show that induced dipole-dipole interactions allow for photon blockade in subwavelength ensembles of two-level, ground-state neutral atoms. Our protocol relies on the energy shift of the single-excitation, superradiant state of N atoms, which can be engineered to yield an effective two-level system. A coherent pump induces Rabi oscillation between the ground state and a collective bright state, with at most a single excitation shared among all atoms. The possibility of using clock transitions that are long-lived and relatively robust against stray fields, alongside new prospects on experiments with subwavelength lattices, makes our proposal a promising alternative for quantum information protocols.

4.
Phys Rev Lett ; 124(11): 113602, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242709

RESUMO

We discuss a technique to strongly couple a single target quantum emitter to a cavity mode, which is enabled by virtual excitations of a nearby mesoscopic ensemble of emitters. A collective coupling of the latter to both the cavity and the target emitter induces strong photon nonlinearities in addition to polariton formation, in contrast to common schemes for ensemble strong coupling. We demonstrate that strong coupling at the level of a single emitter can be engineered via coherent and dissipative dipolar interactions with the ensemble, and provide realistic parameters for a possible implementation with SiV^{-} defects in diamond. Our scheme can find applications, amongst others, in quantum information processing or in the field of cavity-assisted quantum chemistry.

5.
Phys Rev Lett ; 123(24): 243401, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922857

RESUMO

We report the experimental observation of collective multimode vacuum Rabi splitting in free space. In contrast to optical cavities, the atoms couple to a continuum of modes, and the optical thickness of the cloud provides a measure of this coupling. The splitting, also referred as normal mode splitting, is monitored through the Rabi oscillations in the scattered intensity, and the results are fully explained by a linear-dispersion theory.

6.
Nat Mater ; 14(11): 1123-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26366850

RESUMO

Much effort over the past decades has been focused on improving carrier mobility in organic thin-film transistors by optimizing the organization of the material or the device architecture. Here we take a different path to solving this problem, by injecting carriers into states that are hybridized to the vacuum electromagnetic field. To test this idea, organic semiconductors were strongly coupled to plasmonic modes to form coherent states that can extend over as many as 10(5) molecules and should thereby favour conductivity. Experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility. A theoretical quantum model confirms the delocalization of the wavefunctions of the hybridized states and its effect on the conductivity. Our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.

7.
Phys Rev Lett ; 117(13): 135302, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715123

RESUMO

We show that an interplay between quantum effects, strong on-site ferromagnetic exchange interaction, and antiferromagnetic correlations in Kondo lattices can give rise to an exotic spin-orbit coupled metallic state in regimes where classical treatments predict a trivial insulating behavior. This phenomenon can be simulated with ultracold alkaline-earth fermionic atoms subject to a laser-induced magnetic field by observing dynamics of spin-charge excitations in quench experiments.

8.
Phys Rev Lett ; 112(7): 070404, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579573

RESUMO

We investigate theoretically the suppression of two-body losses when the on-site loss rate is larger than all other energy scales in a lattice. This work quantitatively explains the recently observed suppression of chemical reactions between two rotational states of fermionic KRb molecules confined in one-dimensional tubes with a weak lattice along the tubes [Yan et al., Nature (London) 501, 521 (2013)]. New loss rate measurements performed for different lattice parameters but under controlled initial conditions allow us to show that the loss suppression is a consequence of the combined effects of lattice confinement and the continuous quantum Zeno effect. A key finding, relevant for generic strongly reactive systems, is that while a single-band theory can qualitatively describe the data, a quantitative analysis must include multiband effects. Accounting for these effects reduces the inferred molecule filling fraction by a factor of 5. A rate equation can describe much of the data, but to properly reproduce the loss dynamics with a fixed fillingfraction for all lattice parameters we develop a mean-field model and benchmark it with numerically exacttime-dependent density matrix renormalization group calculations.

9.
Phys Rev Lett ; 109(2): 020505, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23030143

RESUMO

We discuss a scheme to measure the many-body entanglement growth during quench dynamics with bosonic atoms in optical lattices. By making use of a 1D or 2D setup in which two copies of the same state are prepared, we show how arbitrary order Rényi entropies can be extracted by using tunnel coupling between the copies and measurement of the parity of on-site occupation numbers, as has been performed in recent experiments. We illustrate these ideas for a superfluid-Mott insulator quench in the Bose-Hubbard model, and also for hard-core bosons, and show that the scheme is robust against imperfections in the measurements.

10.
Nat Commun ; 10(1): 1714, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979894

RESUMO

Understanding quantum thermalization through entanglement build up in isolated quantum systems addresses fundamental questions on how unitary dynamics connects to statistical physics. Spin systems made of long-range interacting atoms offer an ideal experimental platform to investigate this question. Here, we study the spin dynamics and approach towards local thermal equilibrium of a macroscopic ensemble of S = 3 chromium atoms pinned in a three dimensional optical lattice and prepared in a pure coherent spin state, under the effect of magnetic dipole-dipole interactions. Our isolated system thermalizes under its own dynamics, reaching a steady state consistent with a thermal ensemble with a temperature dictated from the system's energy. The build up of quantum correlations during the dynamics is supported by comparison with an improved numerical quantum phase-space method. Our observations are consistent with a scenario of quantum thermalization linked to the growth of entanglement entropy.

11.
Nat Commun ; 7: 11039, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26984643

RESUMO

We investigate collective emission from coherently driven ultracold (88)Sr atoms. We perform two sets of experiments using a strong and weak transition that are insensitive and sensitive, respectively, to atomic motion at 1 µK. We observe highly directional forward emission with a peak intensity that is enhanced, for the strong transition, by >10(3) compared with that in the transverse direction. This is accompanied by substantial broadening of spectral lines. For the weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile, a density-dependent frequency shift of the weak transition (∼10% of the natural linewidth) is observed. In contrast, this shift is suppressed to <1% of the natural linewidth for the strong transition. Along the transverse direction, we observe strong polarization dependences of the fluorescence intensity and line broadening for both transitions. The measurements are reproduced with a theoretical model treating the atoms as coherent, interacting radiating dipoles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA