Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999014

RESUMO

3,4-bridged indoles are underrepresented among the vast number of indoles described in the literature. Attempts to access 3,4-macrocyclized indoles led to the unexpected formation of a novel tetracyclic indole through intramolecular acid-catalyzed ring contraction. The herein-established one-step synthetic route provides an excellent medicinal chemistry platform for the construction of screening libraries covering a unique chemical space of indoles.

2.
Arch Pharm (Weinheim) ; 356(6): e2300072, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36978206

RESUMO

Pertuzumab (Perjeta®) is a monoclonal antibody approved for the treatment of HER2-positive breast cancer. Before treatment, the concentrate must be diluted to obtain the ready-to-use infusion solution. Data on the storage stabilities of these preparations are lacking but important for all healthcare professionals in the area of outpatient chemotherapy. The aim of this study was to investigate the storage stability of the ready-to-use infusion bags and the concentrates from once-opened vials over a period of up to 42 days. For a comprehensive and unambiguous assessment of pertuzumab's integrity, a panel of orthogonal analytical methods was employed, including a newly established mass spectrometry-based peptide mapping procedure along with a reporter gene assay for monitoring cellular bioactivity. The herein presented data showed that the ready-to-use infusion solutions stored at 4 ± 2°C and at 20 ± 3°C without light protection, as well as the undiluted Perjeta® concentrates stored at 4 ± 2°C, were physicochemically stable and biologically active for 28 days. These results might eventually allow for infusion preparations in advance, thus improving the quality of patient care as well as the economic usage of pertuzumab.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias da Mama , Humanos , Feminino , Relação Estrutura-Atividade , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Estabilidade de Medicamentos
3.
Bioorg Med Chem ; 65: 116782, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512484

RESUMO

Achieving pharmacological control over cardiomyocyte proliferation represents a prime goal in therapeutic cardiovascular research. Here, we identify a novel chemical tool compound for the expansion of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. The forkhead box O (FOXO) inhibitor AS1842856 was identified as a significant hit from an unbiased proliferation screen in early, immature hiPSC- cardiomyocytes (eCMs). The mitogenic effects of AS1842856 turned out to be robust, dose-dependent, sustained, and reversible. eCM numbers increased >30-fold as induced by AS1842856 over three passages. Phenotypically as well as by marker gene expression, the compound interestingly appeared to counteract cellular maturation both in immature hiPSC-CMs as well as in more advanced ones. Thus, FOXO inhibitor AS1842856 presents a novel proliferation inducer for the chemically defined, xeno-free expansion of hiPSC-derived CMs, while its de-differentiation effect might as well bear potential in regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Matriz Extracelular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos
4.
Arch Pharm (Weinheim) ; 354(8): e2100082, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33963608

RESUMO

Small molecules have gained considerable interest in regenerative medicine, as they can effectively modulate cell fates in a spatiotemporal controllable fashion. A continuous challenge in the field represents genuine mimicry or activation of growth factor signaling with small molecules. Here, we selected and profiled three compounds for their capacity to directly or indirectly activate endogenous FGF-2, VEGF, or SHH signaling events in the context of skin regeneration. Phenotypic and functional analysis of primary skin fibroblasts and keratinocytes revealed unique, cell-specific activity profiles for the FGF-2 mimetic SUN11602 and the putative VEGF mimetic ONO-1301. Whereas SUN11602 exclusively stimulated keratinocyte differentiation, ONO-1301 mainly affected the proliferation and migration behavior of fibroblasts. In each skin cell type, both compounds selectively enhanced the expression of MMP1 and VEGFA. A combined small molecule FGF-2/VEGF mimicry may not only improve angiogenesis-related microcirculation but also reduce early fibrosis while facilitating wound remodeling at later stages. SUN11602 and ONO-1301 represent valuable tools for improving the management of difficult-to-heal wounds, particularly for the design and development of small molecule-functionalized, next-generation, engineered skin substitutes.


Assuntos
Benzamidas/farmacologia , Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Piridinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Humanos , Queratinócitos/citologia , Regeneração/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Cicatrização/efeitos dos fármacos
5.
ACS Pharmacol Transl Sci ; 7(4): 1069-1085, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633593

RESUMO

The TGFß type II receptor (TßRII) is a central player in all TGFß signaling downstream events, has been linked to cancer progression, and thus, has emerged as an auspicious anti-TGFß strategy. Especially its targeted degradation presents an excellent goal for effective TGFß pathway inhibition. Here, cellular structure-activity relationship (SAR) data from the TßRII degrader chemotype 1 was successfully transformed into predictive ligand-based pharmacophore models that allowed scaffold hopping. Two distinct 3,4-disubstituted indoles were identified from virtual screening: tetrahydro-4-oxo-indole 2 and indole-3-acetate 3. Design, synthesis, and screening of focused amide libraries confirmed 2r and 3n as potent TGFß inhibitors. They were validated to fully recapitulate the ability of 1 to selectively degrade TßRII, without affecting TßRI. Consequently, 2r and 3n efficiently blocked endothelial-to-mesenchymal transition and cell migration in different cancer cell lines while not perturbing the microtubule network. Hence, 2 and 3 present novel TßRII degrader chemotypes that will (1) aid target deconvolution efforts and (2) accelerate proof-of-concept studies for small-molecule-driven TßRII degradation in vivo.

6.
ACS Pharmacol Transl Sci ; 6(11): 1574-1599, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37974621

RESUMO

The bone morphogenetic protein (BMP) pathway is highly conserved and plays central roles in health and disease. The quality and quantity of its signaling outputs are regulated at multiple levels, offering pharmacological options for targeted modulation. Both target-centric and phenotypic drug discovery (PDD) approaches were applied to identify small-molecule BMP inhibitors and stimulators. In this Review, we accumulated and systematically classified the different reported chemotypes based on their targets as well as modes-of-action, and herein we illustrate the discovery history of selected candidates. A comprehensive summary of available biochemical, cellular, and in vivo activities is provided for the most relevant BMP modulators, along with recommendations on their preferred use as chemical probes to study BMP-related (patho)physiological processes. There are a number of high-quality probes used as BMP inhibitors that potently and selectively interrogate the kinase activities of distinct type I (16 chemotypes available) and type II receptors (3 chemotypes available). In contrast, only a few high-quality BMP stimulator modalities have been introduced to the field due to a lack of profound target knowledge. FK506-derived macrolides such as calcineurin-sparing FKBP12 inhibitors currently represent the best-characterized chemical tools for direct activation of BMP-SMAD signaling at the receptor level. However, several PDD campaigns succeeded in expanding the druggable space of BMP stimulators. Albeit the majority of them do not entirely fulfill the strict chemical probe criteria, many chemotypes exhibit unique and unrecognized mechanisms as pathway potentiators or synergizers, serving as valuable pharmacological tools for BMP perturbation.

7.
ACS Pharmacol Transl Sci ; 6(8): 1207-1220, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588754

RESUMO

Morphogenic signaling pathways govern embryonic development and tissue homeostasis on the cellular level. Precise control of such signaling events paves the way for innovative therapeutic approaches in the field of regenerative medicine. In line with these notions, bone morphogenic protein (BMP) is a major osteogenic driver and pharmacological stimulation of BMP signaling holds supreme potential for diseases and defects of the skeleton. Efforts to identify small-molecule modalities that activate or potentiate the BMP pathway have primarily been focused on the canonical signaling cascade. Here, we describe the phenotypic identification and development of specific carbazolomaleimides 2 as novel noncanonical BMP synergizers with submicromolar osteogenic cellular potency. The devised chemical tools are characterized to specifically regulate Id gene expression in a SMAD-independent, yet highly BMP-dependent fashion. Mechanistic studies revealed that GSK3 inhibition and increased ß-catenin levels are partly responsible for this activity. The utility of the new BMP synergizer profile was further exemplified by showing how the synergistic action of canonical and noncanonical BMP enhancers additively amplifies BMP-dependent osteogenic outputs. Carbazolomaleimide 2b serves as a new and unique pharmacological tool for the modulation and study of the BMP pathway.

8.
Biochem J ; 433(2): 383-91, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21029045

RESUMO

NOSs (nitric oxide synthases) catalyse the oxidation of L-arginine to L-citrulline and nitric oxide via the intermediate NOHA (N(ω)-hydroxy-L-arginine). This intermediate is rapidly converted further, but to a small extent can also be liberated from the active site of NOSs and act as a transportable precursor of nitric oxide or potent physiological inhibitor of arginases. Thus its formation is of enormous importance for the nitric-oxide-generating system. It has also been shown that NOHA is reduced by microsomes and mitochondria to L-arginine. In the present study, we show for the first time that both human isoforms of the newly identified mARC (mitochondrial amidoxime reducing component) enhance the rate of reduction of NOHA, in the presence of NADH cytochrome b5 reductase and cytochrome b5, by more than 500-fold. Consequently, these results provide the first hints that mARC might be involved in mitochondrial NOHA reduction and could be of physiological significance in affecting endogenous nitric oxide levels. Possibly, this reduction represents another regulative mechanism in the complex regulation of nitric oxide biosynthesis, considering a mitochondrial NOS has been identified. Moreover, this reduction is not restricted to NOHA since the analogous arginase inhibitor NHAM (N(ω)-hydroxy-N(δ)-methyl-L-arginine) is also reduced by this system.


Assuntos
Arginina/análogos & derivados , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Animais , Arginina/metabolismo , Benzamidinas , Células Hep G2 , Humanos , Oxirredução , Suínos
9.
J Enzyme Inhib Med Chem ; 27(1): 24-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21740101

RESUMO

DDAH inhibition presents a novel promising pharmaceutical strategy to lower NO formation. To date, several potent DDAH inhibitors have been published, most of them representing analogues of l-arginine. While inhibitory effects on NOSs have already been considered, selectivity over arginase has been neglected so far. In our view, the latter selectivity is more important since an additional inhibition of arginase decreases the desired effects on NO levels. Thus, we particularly focus on selectivity over arginase. We present a comprehensive selectivity profile of known DDAH inhibitors by covering their inhibitory potency on arginase. Among the studied compounds, N(ω)-(2-methoxyethyl)-l-arginine (2a, L-257) that is already selective over NOSs also only modestly affected arginase activity and is thus far the most suitable DDAH inhibitor for pharmacological studies.


Assuntos
Amidoidrolases/antagonistas & inibidores , Arginina/análogos & derivados , Arginina/farmacologia , Inibidores Enzimáticos/farmacologia , Ornitina/farmacologia , Amidoidrolases/isolamento & purificação , Amidoidrolases/metabolismo , Arginina/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Ornitina/análogos & derivados , Ornitina/química , Estereoisomerismo , Relação Estrutura-Atividade
10.
J Med Chem ; 65(2): 1505-1524, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34818008

RESUMO

Restoring lost heart muscle is an attractive goal for cardiovascular regenerative medicine. One appealing strategy is the therapeutic stimulation of cardiomyocyte proliferation, which inter alia remains challenging due to available assay technologies capturing the complex biology. Here, a high-throughput-formatted phenotypic assay platform was established using rodent whole heart-derived cells to preserve the cellular environment of cardiomyocytes. Several readouts allowed the quantification of cycling cardiomyocytes, including a transgenic H2B-mCherry system for unequivocal, automated detection of cardiomyocyte nuclei. A chemical genetics approach revealed pronounced species differences and furnished pan-kinase inhibitors 5 and 36 as potent and robust inducers of endoreplication and acytokinetic mitosis. Combined profiling of the commonly used p38 MAPK inhibitors SB203580 (1), SB239063 (2) and a novel set of skepinone-L (6) derivatives pointed to off-target effects beyond p38 that might be critical for effective cardiomyocyte cytokinesis. Kinome-focused screening eventually furnished TG003 (38) as a novel candidate for stimulating cardiomyocyte proliferation.


Assuntos
Ciclo Celular , Proliferação de Células , Coração , Ensaios de Triagem em Larga Escala , Sondas Moleculares , Miócitos Cardíacos , Inibidores de Proteínas Quinases , Animais , Camundongos , Ratos , Animais Recém-Nascidos , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala/métodos , Camundongos Endogâmicos C57BL , Mitose , Sondas Moleculares/química , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
11.
J Med Chem ; 65(5): 3978-3990, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35108017

RESUMO

We report on the feasibility to harness embryonic development in vitro for the identification of small-molecule cytokine mimetics and signaling activators. Here, a phenotypic, target-agnostic, high-throughput assay is presented that probes bone morphogenetic protein (BMP) signaling during mesodermal patterning of embryonic stem cells. The temporal discrimination of BMP- and transforming growth factor-ß (TGFß)-driven stages of cardiomyogenesis underpins a selective, authentic orchestration of BMP cues that can be recapitulated for the discovery of BMP activator chemotypes. Proof of concept is shown from a chemical screen of 7000 compounds, provides a robust hit validation workflow, and afforded 2,3-disubstituted 4H-chromen-4-ones as potent BMP potentiators with osteogenic efficacy. Mechanistic studies suggest that Chromenone 1 enhances canonical BMP outputs at the expense of TGFß-Smads in an unprecedented manner. Pharmacophoric features were defined, providing a set of novel chemical probes for various applications in (stem) cell biology, regenerative medicine, and basic research on the BMP pathway.


Assuntos
Proteínas Morfogenéticas Ósseas , Fator de Crescimento Transformador beta , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/metabolismo , Desenvolvimento Embrionário , Ensaios de Triagem em Larga Escala , Transdução de Sinais
12.
J Med Chem ; 65(22): 15263-15281, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36346705

RESUMO

Phenotypic drug discovery (PDD) continues to fuel the research and development pipelines with first-in-class therapeutic modalities, but success rates critically depend on the quality of the underlying model system. Here, we employed a stem cell-based approach for the target-agnostic, yet pathway-centric discovery of small-molecule cytokine signaling activators to act as morphogens during development and regeneration. Unbiased screening identified triazolo[1,5-c]quinazolines as a new-in-class in vitro and in vivo active amplifier of the bone morphogenetic protein (BMP) pathway. Cellular BMP outputs were stimulated via enhanced and sustained availability of BMP-Smad proteins, strictly dependent on a minimal BMP input. Holistic target deconvolution unveiled a unique mechanism of dual targeting of casein kinase 1 and phosphatidyl inositol 3-kinase isoforms as key effectors for efficient amplification of osteogenic BMP signaling. This work underscores the asset of PDD to discover unrecognized polypharmacology signatures, in this case significantly expanding the chemical and druggable space of BMP modulators.


Assuntos
Proteínas Morfogenéticas Ósseas , Quinazolinas , Triazóis , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Osteogênese , Quinazolinas/farmacologia , Proteínas Smad/metabolismo , Triazóis/farmacologia
13.
J Med Chem ; 65(24): 16268-16289, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36459434

RESUMO

Identification and analysis of small molecule bioactivity in target-agnostic cellular assays and monitoring changes in phenotype followed by identification of the biological target are a powerful approach for the identification of novel bioactive chemical matter in particular when the monitored phenotype is disease-related and physiologically relevant. Profiling methods that enable the unbiased analysis of compound-perturbed states can suggest mechanisms of action or even targets for bioactive small molecules and may yield novel insights into biology. Here we report the enantioselective synthesis of natural-product-inspired 8-oxotetrahydroprotoberberines and the identification of Picoberin, a low picomolar inhibitor of Hedgehog (Hh)-induced osteoblast differentiation. Global transcriptome and proteome profiling revealed the aryl hydrocarbon receptor (AhR) as the molecular target of this compound and identified a cross talk between Hh and AhR signaling during osteoblast differentiation.


Assuntos
Proteínas Hedgehog , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Diferenciação Celular , Osteoblastos/metabolismo
14.
Org Biomol Chem ; 9(14): 5249-59, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21625725

RESUMO

N(ω)-Hydroxy-L-arginine (NOHA)--the physiological nitric oxide precursor--is the intermediate of NO synthase (NOS) catalysis. Besides the important fact of releasing NO mainly at the NOS-side of action, NOHA also represents a potent inhibitor of arginases, making it an ideal therapeutic tool to treat cardiovascular diseases that are associated with endothelial dysfunction. Here, we describe an approach to impart NOHA drug-like properties, particularly by wrapping up the chemically and metabolically instable N-hydroxyguanidine moiety with different prodrug groups. We present synthetic routes that deliver several more or less highly substituted NOHA derivatives in excellent yields. Versatile prodrug strategies were realized, including novel concepts of bioactivation. Prodrug candidates were primarily investigated regarding their hydrolytic and oxidative stabilities. Within the scope of this work, we essentially present the first prodrug approaches for an interesting pharmacophoric moiety, i.e., N-hydroxyguanidine.


Assuntos
Arginina/análogos & derivados , Fármacos Cardiovasculares/síntese química , Desenho de Fármacos , Pró-Fármacos/síntese química , Arginina/síntese química , Arginina/química , Fármacos Cardiovasculares/química , Físico-Química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Pró-Fármacos/química , Estereoisomerismo
15.
Bioorg Med Chem ; 19(6): 1907-14, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21345682

RESUMO

In general, drugs containing amidines suffer from poor oral bioavailability and are often converted into amidoxime prodrugs to overcome low uptake from the gastrointestinal tract. The esterification of amidoximes with amino acids represents a newly developed double prodrug principle creating derivatives of amidines with both improved oral availability and water solubility. N-valoxybenzamidine (1) is a model compound for this principle, which has been transferred to the antiprotozoic drug pentamidine (8). Prodrug activation depends on esterases and mARC and is thus independent from activation by P450 enzymes. Therefore, drug-drug interactions or side effects will be minimized. The synthesis of these two compounds was established, and their biotransformation was studied in vitro and in vivo. Bioactivation of N-valoxybenzamidine (1) and N,N'-bis(valoxy)pentamidine (7) via hydrolysis and reduction has been demonstrated in vitro with porcine and human subcellular enzyme preparations and the mitochondrial Amidoxime Reducing Component (mARC). Moreover, activation of N-valoxybenzamidine (1) by porcine hepatocytes was studied. In vivo, the bioavailability in rats after oral application of N-valoxybenzamidine (1) was about 88%. Similarly, N,N'-bis(valoxy)pentamidine (7) showed oral bioavailability. Analysis of tissue samples revealed high concentrations of pentamidine (8) in liver and kidney.


Assuntos
Amidinas/química , Oximas/química , Pró-Fármacos/síntese química , Valina/química , Animais , Benzamidinas/síntese química , Benzamidinas/química , Benzamidinas/farmacocinética , Ésteres , Humanos , Microssomos Hepáticos/metabolismo , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Oxirredutases/metabolismo , Pentamidina/síntese química , Pentamidina/química , Pentamidina/farmacocinética , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos
16.
ChemMedChem ; 16(8): 1283-1289, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33336890

RESUMO

The protozoan parasite Plasmodium falciparum causes the most severe and prevailing form of malaria in sub-Saharan Africa. Previously, we identified the plasmodial lactate transporter, PfFNT, a member of the microbial formate-nitrite transporter family, as a novel antimalarial drug target. With the pentafluoro-3-hydroxy-pent-2-en-1-ones, we discovered PfFNT inhibitors that potently kill P. falciparum parasites in vitro. Four additional human-pathogenic Plasmodium species require attention, that is, P. vivax, most prevalent outside of Africa, and the regional P. malariae, P. ovale and P. knowlesi. Herein, we show that the plasmodial FNT variants are highly similar in terms of protein sequence and functionality. The FNTs from all human-pathogenic plasmodia and the rodent malaria parasite were efficiently inhibited by pentafluoro-3-hydroxy-pent-2-en-1-ones. We further established a phenotypic yeast-based FNT inhibitor screen, and found very low compound cytotoxicity and monocarboxylate transporter 1 off-target activity on human cells, particularly of the most potent FNT inhibitor BH267.meta, allowing these compounds to proceed towards animal model malaria studies.


Assuntos
Antimaláricos/farmacologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Pentanonas/farmacologia , Plasmodium/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/toxicidade , Células HEK293 , Células Hep G2 , Humanos , Testes de Sensibilidade Parasitária , Pentanonas/toxicidade
17.
Cell Chem Biol ; 28(5): 625-635.e5, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33503403

RESUMO

Wnt signaling plays a central role in tissue maintenance and cancer. Wnt activates downstream genes through ß-catenin, which interacts with TCF/LEF transcription factors. A major question is how this signaling is coordinated relative to tissue organization and renewal. We used a recently described class of small molecules that binds tubulin to reveal a molecular cascade linking stress signaling through ATM, HIPK2, and p53 to the regulation of TCF/LEF transcriptional activity. These data suggest a mechanism by which mitotic and genotoxic stress can indirectly modulate Wnt responsiveness to exert coherent control over cell shape and renewal. These findings have implications for understanding tissue morphogenesis and small-molecule anticancer therapeutics.


Assuntos
Sondas Moleculares/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição TCF/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Animais , Células Cultivadas , Humanos , Masculino , Sondas Moleculares/química , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Xenopus , Peixe-Zebra , beta Catenina/genética , beta Catenina/metabolismo
18.
Arch Pharm (Weinheim) ; 343(1): 9-16, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19921683

RESUMO

Three amidinoarylhydrazines 1, three arylazoamidines 2, and nine arylazoamidoximes 3 have been synthesized and investigated for their potential to function as nitric oxide (NO) modulators. In-vitro studies demonstrated that 2 and 3 inhibited platelet aggregation (2c, IC(50 )= 3 microM) which could also be shown in vivo by inhibition of thrombus formation in arterioles (3a, 22%). Moreover, for all compounds antihypertensive effects were examined in vivo with SHR rats, with 2a being the most potent candidate by lowering blood pressure by 19%. However, no common underlying mechanism of action could be shown. Some of these compounds released HNO non-enzymatically. Incubations with NO synthase isoforms (NOSs) revealed, that compounds 1 to 3 were weak substrates for NOSs but arylazoamidoximes 3 remarkably elevated the NOSs activity in the presence of L-arginine (3h, up to fivefold). In addition, we examined effects on arginase and dimethylarginine dimethylaminohydrolase (DDAH), two further enzymes involved in the complex regulation of NO biosynthesis, to elucidate whether the observed in-vivo effects can be traced back to their modulation. Furthermore, the metabolic fate of arylazoamidoximes 3 was addressed by investigation of a possible N-reductive biotransformation. In summary, novel NO-modulating compound classes are presented, among which arylazoamidoximes 3 are potent activators of NOS isoforms, and arylazoamidines 2 exert in-vivo effects by unknown mechanisms.


Assuntos
Fibrinolíticos/farmacologia , Óxido Nítrico/biossíntese , Oximas/farmacologia , Vasodilatadores/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Fibrinolíticos/síntese química , Oximas/síntese química , Inibidores da Agregação Plaquetária/farmacologia , Ratos , Ratos Endogâmicos SHR , Relação Estrutura-Atividade , Vasodilatadores/síntese química
19.
J Med Chem ; 63(1): 425-432, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31841335

RESUMO

N-(4-Aminobutyl)-N'-(2-methoxyethyl)guanidine (8a) is a potent inhibitor targeting the hDDAH-1 active site (Ki = 18 µM) and derived from a series of guanidine- and amidine-based inhibitors. Its nonamino acid nature leads to high selectivities toward other enzymes of the nitric oxide-modulating system. Crystallographic data of 8a-bound hDDAH-1 illuminated a unique binding mode. Together with its developed N-hydroxyguanidine prodrug 11, 8a will serve as a most widely applicable, pharmacological tool to target DDAH-1-associated diseases.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/química , Guanidinas/química , Amidoidrolases/química , Amidoidrolases/metabolismo , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Guanidinas/síntese química , Guanidinas/metabolismo , Humanos , Ligação Proteica
20.
Nat Commun ; 11(1): 5425, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110077

RESUMO

Transcription factors are key protein effectors in the regulation of gene transcription, and in many cases their activity is regulated via a complex network of protein-protein interactions (PPI). The chemical modulation of transcription factor activity is a long-standing goal in drug discovery but hampered by the difficulties associated with the targeting of PPIs, in particular when extended and flat protein interfaces are involved. Peptidomimetics have been applied to inhibit PPIs, however with variable success, as for certain interfaces the mimicry of a single secondary structure element is insufficient to obtain high binding affinities. Here, we describe the design and characterization of a stabilized protein tertiary structure that acts as an inhibitor of the interaction between the transcription factor TEAD and its co-repressor VGL4, both playing a central role in the Hippo signalling pathway. Modification of the inhibitor with a cell-penetrating entity yielded a cell-permeable proteomimetic that activates cell proliferation via regulation of the Hippo pathway, highlighting the potential of protein tertiary structure mimetics as an emerging class of PPI modulators.


Assuntos
Peptidomiméticos , Fatores de Transcrição/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Via de Sinalização Hippo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA