Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Mater ; 21(3): 345-351, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34845364

RESUMO

Progress in understanding crystallization pathways depends on the ability to unravel relationships between intermediates and final crystalline products at the nanoscale, which is a particular challenge at elevated pressure and temperature. Here we exploit a high-pressure atomic force microscope to directly visualize brucite carbonation in water-bearing supercritical carbon dioxide (scCO2) at 90 bar and 50 °C. On introduction of water-saturated scCO2, in situ visualization revealed initial dissolution followed by nanoparticle nucleation consistent with amorphous magnesium carbonate (AMC) on the surface. This is followed by growth of nesquehonite (MgCO3·3H2O) crystallites. In situ imaging provided direct evidence that the AMC intermediate acts as a seed for crystallization of nesquehonite. In situ infrared and thermogravimetric-mass spectrometry indicate that the stoichiometry of AMC is MgCO3·xH2O (x = 0.5-1.0), while its structure is indicated to be hydromagnesite-like according to density functional theory and X-ray pair distribution function analysis. Our findings thus provide insight for understanding the stability, lifetime and role of amorphous intermediates in natural and synthetic systems.


Assuntos
Dióxido de Carbono , Hidróxido de Magnésio , Dióxido de Carbono/química , Carbonatos , Hidróxido de Magnésio/química , Temperatura , Água/química
2.
Environ Sci Technol ; 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342971

RESUMO

We used IR and XRD, with supporting theoretical calculations, to investigate the swelling behavior of Na+-, NH4+-, and Cs+-montmorillonites (SWy-2) in supercritical fluid mixtures of H2O, CO2, and CH4. Building on our prior work with Na-clay that demonstrated that H2O facilitated CO2 intercalation at relatively low RH, here we show that increasing CO2/CH4 ratios promote H2O intercalation and swelling of the Na-clay at progressively lower RH. In contrast to the Na-clay, CO2 intercalated and expanded the Cs-clay even in the absence of H2O, while increasing fluid CO2/CH4 ratios inhibited H2O intercalation. The NH4-clay displayed intermediate behavior. By comparing changes in the HOH bending vibration of H2O intercalated in the Cs-, NH4-, and Na-clays, we posit that CO2 facilitated expansion of the Na-clay by participating in outer-sphere solvation of Na+ and by disrupting the H-bond network of intercalated H2O. In no case did the pure CH4 fluid induce expansion. Our experimental data can benchmark modeling studies aimed at predicting clay expansion in humidified fluids with varying ratios of CO2 and CH4 in real reservoir systems with implications for enhanced hydrocarbon recovery and CO2 storage in subsurface environments.

3.
Environ Sci Technol ; 52(12): 7138-7148, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29874053

RESUMO

We explored the influence of a model organic ligand on mineral carbonation in nanoscale interfacial water films by conducting five time-resolved in situ X-ray diffraction (XRD) experiments at 50 °C. Forsterite was exposed to water-saturated supercritical carbon dioxide (90 bar) that had been equilibrated with 0-0.5 m citrate (C6H5O7-3) solutions. The experimental results demonstrated that greater concentrations of citrate in the nanoscale interfacial water film promoted the precipitation of magnesite (MgCO3) relative to nesquehonite (MgCO3·3H2O). At the highest concentrations tested, magnesite nucleation and growth were inhibited, lowering the carbonation rate constant from 9.1 × 10-6 to 3.6 × 10-6 s-1. These impacts of citrate were due to partial dehydration of Mg2+(aq) and the adsorption of citrate onto nuclei and magnesite surfaces. This type of information may be used to predict and tailor subsurface mineralization rates and pathways.


Assuntos
Ácido Cítrico , Água , Dióxido de Carbono , Citratos , Cinética , Minerais
4.
Angew Chem Int Ed Engl ; 55(29): 8285-9, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27238977

RESUMO

The demand for Xe/Kr separation continues to grow due to the industrial significance of high-purity Xe gas. Current separation processes rely on energy intensive cryogenic distillation. Therefore, less energy intensive alternatives, such as physisorptive separation, using porous materials, are required. Herein we show that an underexplored class of porous materials called hybrid ultra-microporous materials (HUMs) affords new benchmark selectivity for Xe separation from Xe/Kr mixtures. The isostructural materials, CROFOUR-1-Ni and CROFOUR-2-Ni, are coordination networks that have coordinatively saturated metal centers and two distinct types of micropores, one of which is lined by CrO4 (2-) (CROFOUR) anions and the other is decorated by the functionalized organic linker. These nets offer unprecedented selectivity towards Xe. Modelling indicates that the selectivity of these nets is tailored by synergy between the pore size and the strong electrostatics afforded by the CrO4 (2-) anions.

5.
J Am Chem Soc ; 137(22): 7007-10, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26000710

RESUMO

The cryogenic separation of noble gases is energy-intensive and expensive, especially when low concentrations are involved. Metal-organic frameworks (MOFs) containing polarizing groups within their pore spaces are predicted to be efficient Xe/Kr solid-state adsorbents, but no experimental insights into the nature of the Xe-network interaction are available to date. Here we report a new microporous MOF (designated SBMOF-2) that is selective toward Xe over Kr under ambient conditions, with a Xe/Kr selectivity of about 10 and a Xe capacity of 27.07 wt % at 298 K. Single-crystal diffraction results show that the Xe selectivity may be attributed to the specific geometry of the pores, forming cages built with phenyl rings and enriched with polar -OH groups, both of which serve as strong adsorption sites for polarizable Xe gas. The Xe/Kr separation in SBMOF-2 was investigated with experimental and computational breakthrough methods. These experiments showed that Kr broke through the column first, followed by Xe, which confirmed that SBMOF-2 has a real practical potential for separating Xe from Kr. Calculations showed that the capacity and adsorption selectivity of SBMOF-2 are comparable to those of the best-performing unmodified MOFs such as NiMOF-74 or Co formate.

6.
J Am Chem Soc ; 137(40): 13183-90, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26387968

RESUMO

"Breathing" metal-organic frameworks (MOFs) are an emerging class of soft porous crystals (SPCs) with potential for high working capacity for gas storage applications. However, most breathing MOFs have low stability and/or low surface area. Here we report a water-stable, high surface area, breathing MOF of ftw topology, NU-1105. While Zr6-oxo clusters as nodes introduce water stability in NU-1105, its high surface area and breathing character stem from its pyrene-based tetracarboxylate (Py-FP) linkers, in which the fluorene units (F) in the FP "arms" play a key role in promoting breathing behavior. During gas sorption studies, the "closed pore" (cp) ↔ "open pore" (op) transition of NU-1105 occurs at a propane pressure of ∼3 bar. At 1 bar, NU-1105 is in its cp form and adsorbs less propane than it would in its op form, highlighting improved working capacity. In situ powder X-ray diffraction during propane sorption was used to track the cp ↔ op transition, and molecular modeling was used to elucidate the structure of the op and cp forms of NU-1105. According to TD-DFT calculations, the proposed conformations of the Py-FP linkers in the op and cp forms are consistent with the measured excitation and emission spectra of the op and cp forms of NU-1105. Similar structural transitions are also observed in the porphyrinic MOF NU-1104 depending on the identity of the porphyrin core; we observed breathing behavior if the constituent Por-PTP linker is nonmetalated.

7.
Langmuir ; 31(27): 7533-43, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26079871

RESUMO

Continental flood basalts are attractive formations for geologic sequestration of carbon dioxide because of their reactive divalent-cation containing silicates, such as forsterite (Mg2SiO4), suitable for long-term trapping of CO2 mineralized as metal carbonates. The goal of this study was to investigate at a molecular level the carbonation products formed during the reaction of forsterite with supercritical CO2 (scCO2) as a function of the concentration of H2O adsorbed to the forsterite surface. Experiments were performed at 50 °C and 90 bar using an in situ IR titration capability, and postreaction samples were examined by ex situ techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), focused ion beam transmission electron microscopy (FIB-TEM), thermal gravimetric analysis mass spectrometry (TGA-MS), and magic angle spinning nuclear magnetic resonance (MAS NMR). Carbonation products and reaction extents varied greatly with adsorbed H2O. We show for the first time evidence of Mg-carbonate surface complexation under wet scCO2 conditions. Carbonate is found to be coordinated to Mg at the forsterite surface in a predominately bidentate fashion at adsorbed H2O concentrations below 27 µmol/m(2). Above this concentration and up to 76 µmol/m(2), monodentate coordinated complexes become dominant. Beyond a threshold adsorbed H2O concentration of 76 µmol/m(2), crystalline carbonates continuously precipitate as magnesite, and the particles that form are hundreds of times larger than the estimated thicknesses of the adsorbed water films of about 7 to 15 Å. At an applied level, these results suggest that mineral carbonation in scCO2 dominated fluids near the wellbore and adjacent to caprocks will be insignificant and limited to surface complexation, unless adsorbed H2O concentrations are high enough to promote crystalline carbonate formation. At a fundamental level, the surface complexes and their dependence on adsorbed H2O concentration give insights regarding forsterite dissolution processes and magnesite nucleation and growth.

8.
Environ Sci Technol ; 49(7): 4724-34, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25807011

RESUMO

Subsurface injection of CO2 for enhanced hydrocarbon recovery, hydraulic fracturing of unconventional reservoirs, and geologic carbon sequestration produces a complex geochemical setting in which CO2-dominated fluids containing dissolved water and organic compounds interact with rocks and minerals. The details of these reactions are relatively unknown and benefit from additional experimentally derived data. In this study, we utilized an in situ X-ray diffraction technique to examine the carbonation reactions of forsterite (Mg2SiO4) during exposure to supercritical CO2 (scCO2) that had been equilibrated with aqueous solutions of acetate, oxalate, malonate, or citrate at 50 °C and 90 bar. The organics affected the relative abundances of the crystalline reaction products, nesquehonite (MgCO3 · 3H2O) and magnesite (MgCO3), likely due to enhanced dehydration of the Mg(2+) cations by the organic ligands. These results also indicate that the scCO2 solvated and transported the organic ligands to the forsterite surface. This phenomenon has profound implications for mineral transformations and mass transfer in the upper crust.


Assuntos
Dióxido de Carbono/química , Carbonatos/síntese química , Minerais/química , Compostos de Silício/química , Sequestro de Carbono , Ligantes , Magnésio/análise , Magnésio/química , Água/química , Difração de Raios X
9.
Environ Sci Technol ; 49(17): 10736-44, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26200317

RESUMO

Magnesite precipitation from aqueous solution, despite conditions of supersaturation, is kinetically hindered at low temperatures for reasons that remain poorly understood. The present study examines the products of Mg(OH)2 reaction in solutions saturated with supercritical CO2 at high pressures (90 and 110 atm) and low temperatures (35 and 50 °C). Solids characterization combined with in situ solution analysis reveal that the first reaction products are the hydrated carbonates hydromagnesite and nesquehonite, appearing simultaneously with brucite dissolution. Magnesite is not observed until it comprises a minor product at 7 days reaction at 50 °C. Complete transition to magnesite as the sole product at 35 °C (135 days) and at a faster rate at 50 °C (56 days) occurs as the hydrated carbonates slowly dissolve under the slightly acidic conditions generated at high pCO2. Such a reaction progression at high pCO2 suggests that over long term the hydrated Mg-carbonates functioned as intermediates in magnesite formation. These findings highlight the importance of developing a better understanding of the processes expected to occur during CO2 storage. They also support the importance of integrating magnesite as an equilibrium phase in reactive transport calculations of the effects of CO2 sequestration on geological formations at long time scale.


Assuntos
Dióxido de Carbono/química , Temperatura Baixa , Magnésio/química , Pressão Parcial , Atmosfera/química , Hidróxido de Magnésio/química , Microscopia Eletrônica de Varredura , Soluções , Termogravimetria , Difração de Raios X
10.
Langmuir ; 30(21): 6120-8, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24810708

RESUMO

Shale formations play fundamental roles in large-scale geologic carbon sequestration (GCS) aimed primarily to mitigate climate change and in smaller-scale GCS targeted mainly for CO2-enhanced gas recovery operations. Reactive components of shales include expandable clays, such as montmorillonites and mixed-layer illite/smectite clays. In this study, in situ X-ray diffraction (XRD) and in situ infrared (IR) spectroscopy were used to investigate the swelling/shrinkage and H2O/CO2 sorption of Na(+)-exchanged montmorillonite, Na-SWy-2, as the clay is exposed to variably hydrated supercritical CO2 (scCO2) at 50 °C and 90 bar. Measured d001 values increased in stepwise fashion and sorbed H2O concentrations increased continuously with increasing percent H2O saturation in scCO2, closely following previously reported values measured in air at ambient pressure over a range of relative humidities. IR spectra show H2O and CO2 intercalation, and variations in peak shapes and positions suggest multiple sorbed types of H2O and CO2 with distinct chemical environments. Based on the absorbance of the asymmetric CO stretching band of the CO2 associated with the Na-SWy-2, the sorbed CO2 concentration increases dramatically at sorbed H2O concentrations from 0 to 4 mmol/g. Sorbed CO2 then sharply decreases as sorbed H2O increases from 4 to 10 mmol/g. With even higher sorbed H2O concentrations as saturation of H2O in scCO2 was approached, the concentration of sorbed CO2 decreased asymptotically. Two models, one involving space filling and the other a heterogeneous distribution of integral hydration states, are discussed as possible mechanisms for H2O and CO2 intercalations in montmorillonite. The swelling/shrinkage of montmorillonite could affect solid volume, porosity, and permeability of shales. Consequently, the results may aid predictions of shale caprock integrity in large-scale GCS as well as methane transmissivity in enhanced gas recovery operations.

11.
Environ Sci Technol ; 48(9): 5298-305, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24669947

RESUMO

Sequestering carbon dioxide (CO2) containing minor amounts of co-contaminants in geologic formations was investigated in the laboratory through the use of high pressure static experiments. Five different basalt samples were immersed in water equilibrated with supercritical CO2 containing 1 wt % sulfur dioxide (SO2) and 1 wt % oxygen (O2) at reservoir conditions (∼ 100 bar, 90 °C) for 48 and 98 days. Gypsum (CaSO4) was a common precipitate, occurred early as elongated blades with striations, and served as substrates for other mineral products. In addition to gypsum, bimodal pulses of water released during dehydroxylation were key indicators, along with X-ray diffraction, for verifying the presence of jarosite-alunite group minerals. Well-developed pseudocubic jarosite crystals formed surface coatings, and in some instances, mixtures of natrojarosite and natroalunite aggregated into spherically shaped structures measuring 100 µm in diameter. Reaction products were also characterized using infrared spectroscopy, which indicated OH and Fe-O stretching modes. The presences of jarosite-alunite group minerals were found in the lower wavenumber region from 700 to 400 cm(-1). A strong preferential incorporation of Fe(III) into natrojarosite was attributed to the oxidation potential of O2. Evidence of CO2 was detected during thermal decomposition of precipitates, suggesting the onset of mineral carbonation.


Assuntos
Dióxido de Carbono/química , Minerais/química , Oxigênio/química , Silicatos/química , Dióxido de Enxofre/química , Água/química , Espectrometria de Massas , Espectrofotometria Infravermelho , Difração de Raios X
12.
Environ Sci Technol ; 47(1): 205-11, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22917276

RESUMO

Geologic storage of CO(2) requires that the caprock sealing the storage rock is highly impermeable to CO(2). Swelling clays, which are important components of caprocks, may interact with CO(2) leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO(2) with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO(2) densities of ≈ 0.15 g/cm(3), followed by an approximately linear decrease of excess sorption to zero and negative values with increasing CO(2) bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO(2) are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 Å. The density of CO(2) in the clay pores is relatively stable over a wide range of CO(2) pressures at a given temperature, indicating the formation of a clay-CO(2) phase. At the excess sorption maximum, increasing CO(2) sorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak temperature dependence.


Assuntos
Bentonita/química , Dióxido de Carbono/química , Adsorção , Sequestro de Carbono , Difração de Nêutrons
13.
Langmuir ; 28(18): 7125-8, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22533894

RESUMO

The interaction of anhydrous supercritical CO(2) (scCO(2)) with both kaolinite and ~1W (i.e., close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO(2) molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy, and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO(2) conditions is due to CO(2) migration into the interlayer. Intercalated CO(2) molecules are rotationally constrained and do not appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO(2) does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.

14.
Phys Chem Chem Phys ; 14(8): 2560-6, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22083039

RESUMO

We report the first Raman spectra of fully (18)O-labeled supercritical CO(2) (scCO(2)) and various isotopic mixtures. The experimental results, coupled with ab initio molecular dynamics calculations, demonstrate that the frequencies assigned to the Fermi dyad of the CO(2) molecule transpose upon isotopic labeling of both oxygen atoms. Although the transposition of the Fermi dyad of CO(2) gas due to isotopic substitution has been discussed before, this is the first confirmation of the effect in the Raman spectrum of the supercritical fluid and provides necessary groundwork for future Raman spectroscopy studies of reactions in this important medium. More importantly, the work yields a quantitative assessment of the mixing of states upon labeling that provides the needed clarification concerning the pedigree of the assignments for the dyad of CO(2) under supercritical conditions.

15.
J Phys Chem A ; 116(19): 4768-77, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-22533532

RESUMO

In geologic carbon sequestration, whereas part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated supercritical CO(2) (scCO(2)) near the well bore and at the caprock, especially in the short term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO(2) containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)(2)) in situ over a 24 h reaction period with scCO(2) containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO(2). Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO(3)·3H(2)O). Mixtures of nesquehonite and magnesite (MgCO(3)) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.


Assuntos
Dióxido de Carbono/química , Hidróxido de Magnésio/química , Água/química , Dióxido de Carbono/isolamento & purificação , Sequestro de Carbono , Geologia , Espectrofotometria Infravermelho , Temperatura
16.
ChemSusChem ; 13(10): 2602-2612, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32227672

RESUMO

ZIF-8 was synthesized in supercritical carbon dioxide (scCO2 ). In situ powder X-ray diffraction, ex situ microscopy, and simulations provide an encompassing view of the formation of ZIF-8 and intermediary ZnO@ZIF-8 composites in this nontraditional solvent. Time-resolved imaging exposed divergent physicochemical reaction pathways from previous studies of the growth of anisotropic ZIF-8 core@shell structures in traditional solvents. Synthetically relevant physiochemical properties of scCO2 were integrated into classical nucleation theory, relating interfacial forces, calculated through DFTB+ based molecular dynamics (MD), with 3D nucleation outcomes. The kinetics of crystallization were examined and displayed a characteristic signature of time- and temperature-dependent mechanisms over the extent of the reaction. Lastly, it is shown that subtle factors, such as the extent of reaction and the size/shape of sacrificial templates can tailor ZIF-8 composition and size, eliciting control over hierarchical porosity in a nonconventional green solvent.

17.
Nat Mater ; 7(2): 146-50, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18193053

RESUMO

Organic solids composed by weak van der Waals forces are attracting considerable attention owing to their potential applications in gas storage, separation and sensor applications. Herein we report a gas-induced transformation that remarkably converts the high-density guest-free form of a well-known organic host (p-tert-butylcalix[4]arene) to a low-density form and vice versa, a process that would be expected to involve surmounting a considerable energy barrier. This transformation occurs despite the fact that the high-density form is devoid of channels or pores. Gas molecules seem to diffuse through the non-porous solid into small lattice voids, and initiate the transition to the low-density kinetic form with approximately 10% expansion of the crystalline organic lattice, which corresponds to absorption of CO2 and N2O (refs 4,5). This suggests the possibility of a more general phenomenon that can be exploited to find more porous materials from non-porous organic and metal-organic frameworks that possess void space large enough to accommodate the gas molecules.

18.
Chem Commun (Camb) ; 55(48): 6835-6837, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31139791

RESUMO

Magnesite (MgCO3) precipitation within the nanoconfined space of adsorbed H2O films (∼5 monolayers) was determined to have an apparent activation energy of only 36 ± 6 kJ mol-1, suggesting that Mg2+ under nanoconfinement adopts a hydration configuration that mimics that of aqueous Ca2+, at least energetically, if not also specifically in hydration structure.

19.
Adv Sci (Weinh) ; 6(7): 1802056, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30989028

RESUMO

Efficient removal of heterocyclic organosulfur compounds from fuels can relieve increasingly serious environmental problems (e.g., gas exhaust contaminants triggering the formation of acid rain that can damage fragile ecological systems). Toward this end, novel metal-organic frameworks (MOFs)-based sorbent materials are designed and synthesized with distinct hard and soft metal building units, specifically {[Yb6Cu12(OH)4(PyC)12(H2O)36]·(NO3)14·xS} n (QUST-81) and {[Yb4O(H2O)4Cu8(OH)8/3(PyC)8(HCOO)4]·(NO3)10/3·xS} n (QUST-82), where H2PyC = 4-Pyrazolecarboxylic acid. Exploiting the hard/soft duality, it is shown that the more stable QUST-82 can preserve desulfurization efficiency in the presence of competing nitrogen-containing contaminate. In addition, thermodynamically controlled single-crystal-to-single-crystal (SC-SC) phase transition is uncovered from QUST-81 to QUST-82, and in turn, mechanistic features are probed via X-ray diffraction, inductively coupled plasma atomic emission spectroscopy, and ab initio molecular dynamics simulations.

20.
J Phys Chem Lett ; 9(17): 4988-4994, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30107739

RESUMO

Reaction pathways and kinetics in highly structured H2O adsorbed as Ångstrom to nanometer thick layers on mineral surfaces are distinct from those facilitated by bulk liquid water. We investigate the role of the interfacial H2O structure in the reaction of H2O and CO2 to form carbonic acid (H2CO3) in thin H2O films condensed onto silica nanoparticles from humidified supercritical CO2. Rates of carbonic acid formation are correlated with spectroscopic signatures of H2O structure using oxygen isotopic tracers and infrared spectroscopy. While carbonic acid virtually does not form in the supercritical phase, the silica surface catalyzes this reaction by concentrating H2O through adsorption at hydrophilic silanol groups. Within measurement uncertainty, we found no evidence that carbonic acid forms when exclusively ice-like structured H2O is detected at the silica surface. Instead, formation of H2C18O16O2 from H218O and C16O2 was found to be linearly correlated with liquid-like structured H2O that formed on the ice-like layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA