Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 536(7617): 456-9, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27533038

RESUMO

Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.


Assuntos
Biodiversidade , Cadeia Alimentar , Animais , Biomassa , Alemanha , Pradaria , Herbivoria , Insetos , Microbiologia , Modelos Biológicos , Plantas
2.
Oecologia ; 183(2): 597-606, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27873065

RESUMO

Density-dependent processes are fundamental mechanisms for the regulation of populations. Ecological theories differ in their predictions on whether increasing population density leads to individual adjustments of survival and reproductive output or to dominance and monopolization of resources. Here, we use a natural experiment to examine which factors limit population growth in the only remaining population of the endangered pale-headed brush finch (Atlapetes pallidiceps). For three distinct phases (a phase of population suppression, 2001-2002; expansion due to conservation management, 2003-2008; and equilibrium phase, 2009-2014), we estimated demographic parameters with an integrated population model using population size, the proportion of successfully breeding pairs and their productivity, territory size, and mark-recapture data of adult birds. A low proportion of successful breeders due to brood parasitism (0.42, 95% credible interval 0.26-0.59) limited population growth before 2003; subsequent culling of the brood parasite resulted in a two-fold increase of the proportion of successful breeders during the 'expansion phase'. When the population approached the carrying capacity of its habitat, territory size declined by more than 50% and fecundity declined from 1.9 (1.54-2.27) to 1.3 (1.12-1.53) chicks per breeding pair, but the proportion of successful breeders remained constant (expansion phase: 0.85; 0.76-0.93; equilibrium phase: 0.86; 0.79-0.92). This study demonstrates that limiting resources can lead to individual adjustments instead of despotic behavior, and the individual reduction of reproductive output at high population densities is consistent with the slow life-history of many tropical species.


Assuntos
Conservação dos Recursos Naturais , Aves Canoras , Animais , Ecossistema , Fertilidade , Densidade Demográfica , Dinâmica Populacional
3.
Proc Biol Sci ; 283(1823)2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26817779

RESUMO

Species' functional roles in key ecosystem processes such as predation, pollination or seed dispersal are determined by the resource use of consumer species. An interaction between resource and consumer species usually requires trait matching (e.g. a congruence in the morphologies of interaction partners). Species' morphology should therefore determine species' functional roles in ecological processes mediated by mutualistic or antagonistic interactions. We tested this assumption for Neotropical plant-bird mutualisms. We used a new analytical framework that assesses a species's functional role based on the analysis of the traits of its interaction partners in a multidimensional trait space. We employed this framework to test (i) whether there is correspondence between the morphology of bird species and their functional roles and (ii) whether morphologically specialized birds fulfil specialized functional roles. We found that morphological differences between bird species reflected their functional differences: (i) bird species with different morphologies foraged on distinct sets of plant species and (ii) morphologically distinct bird species fulfilled specialized functional roles. These findings encourage further assessments of species' functional roles through the analysis of their interaction partners, and the proposed analytical framework facilitates a wide range of novel analyses for network and community ecology.


Assuntos
Aves/anatomia & histologia , Aves/fisiologia , Comportamento Alimentar/fisiologia , Frutas , Plantas/classificação , Animais , Especificidade da Espécie
4.
Am J Bot ; 102(9): 1453-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26391709

RESUMO

PREMISE OF THE STUDY: Most bird-dispersed fruits are green when unripe and become colored and conspicuous when ripe, signaling that fruits are ready to be consumed and dispersed. The color pattern for fruits of Miconia albicans (Melastomataceae), however, is the opposite, with reddish unripe and green ripe fruits. We (1) verified the maintenance over time of its bicolored display, (2) tested the communicative function of unripe fruits, (3) tested the photoprotective role of anthocyanins in unripe fruits, and (4) verified whether green ripe fruits can assimilate carbon. METHODS: Using a paired experiment, we tested whether detection of ripe fruits was higher on infructescences with unripe and ripe fruits compared with infructescences with only ripe fruits. We also measured and compared gas exchange, chlorophyll a fluorescence, and heat dissipation of covered (to prevent anthocyanin synthesis) and uncovered ripe and unripe fruits. KEY RESULTS: Although the bicolored display was maintained over time, unripe fruits had no influence on bird detection and removal of ripe fruits. Ripe and unripe fruits did not assimilate CO2, but they respired instead. CONCLUSIONS: Since the communicative function of unripe fruits was not confirmed, seed dispersers are unlikely to select the display with bicolored fruits. Because of the absence of photosynthetic activity in ripe and unripe fruits and enhanced photoprotective mechanisms in ripe fruits rather than in unripe fruits, we could not confirm the photoprotective role of anthocyanins in unripe fruits. As an alternative hypothesis, we suggest that the bicolored fruit display could be an adaptation to diversify seed dispersal vectors instead of restricting dispersal to birds and that anthocyanins in unripe fruits may have a defense role against pathogens.


Assuntos
Melastomataceae/fisiologia , Pigmentação , Dispersão de Sementes , Animais , Aves/fisiologia , Brasil , Cor , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Herbivoria , Melastomataceae/crescimento & desenvolvimento
5.
Proc Biol Sci ; 281(1777): 20132516, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24403330

RESUMO

Communication is a characteristic of life, but its reliability and basic definition are hotly debated. Theory predicts that trade among mutualists requires high reliability. Here, we show that moderate reliability already allows mutualists to optimize their rewards. The colours of Mediterranean fleshy-fruits indicate lipid rewards (but not other nutrients) to avian seed dispersers on regional and local scales. On the regional scale, fruits with high lipid content were significantly darker and less chromatic than congeners with lower lipid content. On the local scale, two warbler species (Sylvia atricapilla and Sylvia borin) selected fruit colours that were less chromatic, and thereby maximized their intake of lipids-a critical resource during migration and wintering. Crucially, birds were able to maximize lipid rewards with moderate reliability from visual fruit colours (r(2) = 0.44-0.60). We suggest that mutualisms require only that any association between the quality and sensory aspects of signallers is learned through multiple, repeated interactions. Because these conditions are often fulfilled, also in social communication systems, we contend that selection on reliability is less intense than hitherto assumed. This may contribute to explaining the extraordinary diversity of signals, including that of plant reproductive displays.


Assuntos
Comportamento Alimentar , Frutas/fisiologia , Lipídeos/análise , Aves Canoras/fisiologia , Percepção Visual , Animais , Cor , Cadeia Alimentar , Plantas/metabolismo , Estações do Ano , Dispersão de Sementes , Espanha , Especificidade da Espécie , Análise Espectral
6.
Proc Biol Sci ; 281(1782): 20133320, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24619444

RESUMO

We present a formal model of Janzen's influential theory that competition for resources between microbes and vertebrates causes microbes to be selected to make these resources unpalatable to vertebrates. That is, fruit rots, seeds mould and meat spoils, in part, because microbes gain a selective advantage if they can alter the properties of these resources to avoid losing the resources to vertebrate consumers. A previous model had failed to find circumstances in which such a costly spoilage trait could flourish; here, we present a simple analytic model of a general situation where costly microbial spoilage is selected and persists. We argue that the key difference between the two models lies in their treatments of microbial dispersal. If microbial dispersal is sufficiently spatially constrained that different resource items can have differing microbial communities, then spoilage will be selected; however, if microbial dispersal has a strong homogenizing effect on the microbial community then spoilage will not be selected. We suspect that both regimes will exist in the natural world, and suggest how future empirical studies could explore the influence of microbial dispersal on spoilage.


Assuntos
Comportamento Alimentar/fisiologia , Frutas/microbiologia , Microbiota , Animais , Comportamento de Escolha , Ecossistema , Modelos Biológicos , Vertebrados
7.
New Phytol ; 201(2): 678-686, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26012880

RESUMO

Communication in plant-animal mutualisms frequently involves multiple perceivers. A fundamental uncertainty is whether and how species adapt to communicate with groups of mutualists having distinct sensory abilities. We quantified the colour conspicuousness of flowers and fruits originating from one European and two South American plant communities, using visual models of pollinators (bee and fly) and seed dispersers (bird, primate and marten). We show that flowers are more conspicuous than fruits to pollinators, and the reverse to seed dispersers. In addition, flowers are more conspicuous to pollinators than to seed dispersers and the reverse for fruits. Thus, despite marked differences in the visual systems of mutualists, flower and fruit colours have evolved to attract multiple, distinct mutualists but not unintended perceivers. We show that this adaptation is facilitated by a limited correlation between flower and fruit colours, and by the fact that colour signals as coded at the photoreceptor level are more similar within than between functional groups (pollinators and seed dispersers). Overall, these results provide the first quantitative demonstration that flower and fruit colours are adaptations allowing plants to communicate simultaneously with distinct groups of mutualists.


Assuntos
Adaptação Fisiológica , Cor , Flores/fisiologia , Frutas/fisiologia , Animais , Abelhas/fisiologia , Dípteros/fisiologia , Flores/anatomia & histologia , Preferências Alimentares , Frutas/anatomia & histologia , Polinização , Dispersão de Sementes
8.
Mol Ecol ; 23(23): 5712-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25345968

RESUMO

Many endangered species suffer from the loss of genetic diversity, but some populations may be able to thrive even if genetically depleted. To investigate the underlying genetic processes of population bottlenecks, we apply an innovative approach for assessing genetic diversity in the last known population of the endangered Pale-headed Brushfinch (Atlapetes pallidiceps) in Ecuador. First, we measure genetic diversity at eleven neutral microsatellite loci and adaptive SNP variation in five Toll-like receptor (TLR) immune system genes. Bottleneck tests confirm genetic drift as the main force shaping genetic diversity in this species and indicate a 99 % reduction in population size dating back several hundred years. Second, we compare contemporary microsatellite diversity with historic museum samples of A. pallidiceps, finding no change in genetic diversity. Third, we compare genetic diversity in the Pale-headed Brushfinch with two co-occurring-related brushfinch species (Atlapetes latinuchus, Buarremon torquatus), finding a reduction of up to 91% diversity in the immune system genes but not in microsatellites. High TLR diversity is linked to decreased survival probabilities in A. pallidiceps. Low TLR diversity is thus probably an adaptation to the specific selection regime within its currently very restricted distribution (approximately 200 ha), but could severely restrict the adaptive potential of the species in the long run. Our study illustrates the importance of investigating both neutral and adaptive markers to assess the effect of population bottlenecks and for recommending specific management plans in endangered species.


Assuntos
Espécies em Perigo de Extinção , Tentilhões/genética , Loci Gênicos , Variação Genética , Adaptação Biológica/genética , Animais , Conservação dos Recursos Naturais , Equador , Genética Populacional , Repetições de Microssatélites , Modelos Genéticos , Análise de Sequência de DNA , Receptores Toll-Like/genética
9.
J Exp Biol ; 217(Pt 3): 370-5, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24115065

RESUMO

Thermal stress leads to increased production of reactive oxygen species. If an organism is not able to simultaneously mount an efficient antioxidant defense system, this may lead to increased oxidative damage, which is potentially deleterious in terms of health and fitness. Exposure to cold or heat is therefore expected to be associated with a high demand for antioxidants. In agreement, several studies have shown that supplementing the diet of thermally stressed organisms with antioxidants leads to a reduction of oxidative damage. However, whether organisms can actively supplement their diet with antioxidants to alleviate temperature-induced oxidative damage is unknown. Here, we show that captive Gouldian finches (Erythrura gouldiae) supplement their diet more with seeds rich in antioxidants below than within their thermoneutral zone. Moreover, having access to seeds rich in antioxidants at temperatures below thermoneutrality decreases their oxidative damage. These results indicate that, when facing a thermal challenge, animals are able to take advantage of the antioxidant properties of their food to improve their oxidative balance. Having access to food resources rich in antioxidants may therefore be of primary importance for organisms in their natural habitat, as it may help them to cope with oxidative constraints due to challenging temperature regimes.


Assuntos
Antioxidantes/metabolismo , Tentilhões/fisiologia , Estresse Oxidativo , Estresse Fisiológico , Animais , Dieta , Comportamento Alimentar , Feminino , Masculino , Espécies Reativas de Oxigênio/metabolismo , Temperatura
10.
Biol Lett ; 10(4): 20140134, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24789140

RESUMO

A long-standing but controversial hypothesis assumes that carnivorous plants employ aggressive mimicry to increase their prey capture success. A possible mechanism is that pitcher plants use aggressive mimicry to deceive prey about the location of the pitcher's exit. Specifically, species from unrelated families sport fenestration, i.e. transparent windows on the upper surfaces of pitchers which might function to mimic the exit of the pitcher. This hypothesis has not been evaluated against alternative hypotheses predicting that fenestration functions to attract insects from afar. By manipulating fenestration, we show that it does not increase the number of Drosophila flies or of two ant species entering pitchers in Sarracenia minor nor their retention time or a pitcher's capture success. However, fenestration increased the number of Drosophila flies alighting on the pitcher compared with pitchers of the same plant without fenestration. We thus suggest that fenestration in S. minor is not an example of aggressive mimicry but rather functions in long-range attraction of prey. We highlight the need to evaluate aggressive mimicry relative to alternative concepts of plant-animal communication.


Assuntos
Adaptação Fisiológica , Comportamento Animal , Sarraceniaceae/fisiologia , Animais , Luz , Sarraceniaceae/anatomia & histologia
11.
Oecologia ; 174(4): 1293-300, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24390478

RESUMO

The concept of biological markets aims to explain how organisms interact with each other. Market theory predicts that organisms choose the most rewarding partner in mutualisms. However, partner choice may also be influenced by advertisement which may not be reliable. In seed dispersal mutualism, we analysed whether seed dispersers prioritise taste cues over visual advertisement to select the most rewarding fruits and whether they select against partners with unreliable advertisement. We conducted experiments on black elder (Sambucus nigra), a species of which the colours of the peduncles match the sugar content of their fruits. We created infructescences the colours of which matched or mismatched the sugar content of their fruits. There was no selection against cheaters in the field or by captive blackcaps (Sylvia atricapilla) as seed dispersers. Blackcaps were constrained to select against unreliable advertisement because they swallowed fruits entirely and thus did not obtain an immediate feedback by taste. Instead, blackcaps selected fruits according to the colour variation of red peduncles. Overall, we suggest that the concept of constraints should be incorporated into biological markets. We further contend that biological markets can be more complex than currently acknowledged because a moderate degree of reliability occurred in black elder even in the absence of selection against cheaters.


Assuntos
Comportamento de Escolha , Cor , Dieta , Frutas/química , Passeriformes/fisiologia , Paladar , Animais , Sinais (Psicologia) , Modelos Lineares , Sambucus , Dispersão de Sementes
12.
Proc Biol Sci ; 280(1771): 20131560, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24068354

RESUMO

The central question in communication theory is whether communication is reliable, and if so, which mechanisms select for reliability. The primary approach in the past has been to attribute reliability to strategic costs associated with signalling as predicted by the handicap principle. Yet, reliability can arise through other mechanisms, such as signal verification; but the theoretical understanding of such mechanisms has received relatively little attention. Here, we model whether verification can lead to reliability in repeated interactions that typically characterize mutualisms. Specifically, we model whether fruit consumers that discriminate among poor- and good-quality fruits within a population can select for reliable fruit signals. In our model, plants either signal or they do not; costs associated with signalling are fixed and independent of plant quality. We find parameter combinations where discriminating fruit consumers can select for signal reliability by abandoning unprofitable plants more quickly. This self-serving behaviour imposes costs upon plants as a by-product, rendering it unprofitable for unrewarding plants to signal. Thus, strategic costs to signalling are not a prerequisite for reliable communication. We expect verification to more generally explain signal reliability in repeated consumer-resource interactions that typify mutualisms but also in antagonistic interactions such as mimicry and aposematism.


Assuntos
Evolução Biológica , Comportamento de Escolha/fisiologia , Comunicação , Cadeia Alimentar , Modelos Biológicos , Fenômenos Fisiológicos Vegetais/fisiologia , Simbiose , Animais , Frutas/fisiologia
13.
Oecologia ; 173(2): 461-71, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23568710

RESUMO

To preserve biodiversity and ecosystem functions in a globally changing world it is crucial to understand the effect of land use on ecosystem processes such as pollination. Floral colouration is known to be central in plant-pollinator interactions. To date, it is still unknown whether land use affects the colouration of flowering plant communities. To assess the effect of land use on the diversity and composition of flower colours in temperate grasslands, we collected data on the number of flowering plant species, blossom cover and flower reflectance spectra from 69 plant communities in two German regions, Schwäbische Alb (SA) and Hainich-Dün (HD). We analysed reflectance data of flower colours as they are perceived by honeybees and studied floral colour diversity based upon spectral loci of each flowering plant species in the Maxwell triangle. Before the first mowing, flower colour diversity decreased with increasing land-use intensity in SA, accompanied by a shift of mean flower colours of communities towards an increasing proportion of white blossom cover in both regions. By changing colour characteristics of grasslands, we suggest that increasing land-use intensity can affect the flower visitor fauna in terms of visitor behaviour and diversity. These changes may in turn influence plant reproduction in grassland plant communities. Our results indicate that land use is likely to affect communication processes between plants and flower visitors by altering flower colour traits.


Assuntos
Agricultura , Biodiversidade , Cor , Flores/fisiologia , Magnoliopsida/fisiologia , Animais , Abelhas/fisiologia , Alemanha , Polinização , Análise Espectral
14.
Parasitology ; 140(14): 1799-810, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23981661

RESUMO

Culicoides vectors can transmit a diverse array of parasites and are globally distributed. We studied feeding preferences and seasonal variation of Culicoides (Diptera: Ceratopogonidae) vectors in an urban forest of Germany to determine whether humans living nearby are readily exposed to vector-borne parasites from wild animals. We used a fragment of the mtDNA COI gene to identify hosts from blood meals. We amplified a fragment of the mtDNA cyt b to detect haemosporidian infections in Culicoides abdomens and thoraxes. We detected a total of 22 Culicoides species. Fifty-eight blood meals (84%) were from humans, 10 from birds, and one from livestock. We found Culicoides kibunensis (considered ornithophilic) with 29 human blood meals. Host generalist Culicoides festivipennis and Culicoides obsoletus had 14 human blood meals. Culicoides clastrieri and Culicoides semimaculatus fed on birds; previously humans were their only known host. Six thoraxes and three abdomens were infected with either Haemoproteus pallidulus or Haemoproteus parabelopolskyi. There were changes in Culicoides community structure across months. Culicoides pictipennis was the dominant species during spring, C. kibunensis and C. clastrieri were dominant during summer, and C. obsoletus was dominant by early autumn. All dominant species were generalists feeding on birds, livestock and humans. Our results indicate that humans can serve as a blood source for dominant Culicoides species instead of the normal wild animal hosts in urban areas.


Assuntos
Doenças das Aves/parasitologia , Ceratopogonidae/fisiologia , Comportamento Alimentar/fisiologia , Haemosporida/isolamento & purificação , Insetos Vetores/fisiologia , Infecções Protozoárias em Animais/parasitologia , Animais , Doenças das Aves/epidemiologia , Aves , Ceratopogonidae/classificação , Cidades , Alemanha/epidemiologia , Humanos , Insetos Vetores/classificação , Infecções Protozoárias em Animais/epidemiologia , Estações do Ano , Árvores , Zoonoses
15.
Nat Commun ; 14(1): 6191, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848442

RESUMO

Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.


Assuntos
Aprendizado Profundo , Animais , Clima Tropical , Florestas , Biodiversidade , Árvores , Ecossistema , Conservação dos Recursos Naturais
16.
New Phytol ; 194(2): 488-497, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22309352

RESUMO

Red-pigmented leaf margins are common, but their functional significance is unknown. We hypothesized that red leaf margins reduce leaf herbivory by signalling to herbivorous insects the presence of increased chemical defences. Leaves were collected from a natural population of Pseudowintera colorata. Margin size, herbivory damage, anthocyanin content and concentrations of polygodial, a sesquiterpene dialdehyde with antifeedant properties, were quantified. Feeding trials involving larvae of Ctenopseustis obliquana, a generalist herbivore, were conducted on red- and green-margined P. colorata leaves in darkness, or under white, green or red light. Leaves with wider red margins contained higher concentrations of polygodial and anthocyanins, and incurred less natural herbivory. In trials under white light, C. obliquana consumed disproportionately more green- than red-margined leaf laminae. Larvae exhibited no feeding preference when light was manipulated such that leaf colour discrimination was impaired. Red leaf margins provide a reliable and effective visual signal of chemical defence in P. colorata. Ctenopseustis obliquana larvae perceive and respond to the colour of the leaf margins, rather than to olfactory signals. Our study provides direct experimental evidence for aposematic coloration in red leaves.


Assuntos
Herbivoria/fisiologia , Transdução de Sinal Luminoso , Pigmentação/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Pseudowintera/anatomia & histologia , Pseudowintera/parasitologia , Animais , Antocianinas/metabolismo , Cor , Mariposas/fisiologia , Oviposição/fisiologia , Folhas de Planta/parasitologia , Sesquiterpenos/química , Sesquiterpenos/metabolismo
17.
J Evol Biol ; 25(12): 2412-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23116421

RESUMO

Although communication underpins many biological processes, its function and basic definition remain contentious. In particular, researchers have debated whether information should be an integral part of a definition of communication and how it remains reliable. So far the handicap principle, assuming signal costs to stabilize reliable communication, has been the predominant paradigm in the study of animal communication. The role of by-product information produced by mechanisms other than the communicative interaction has been neglected in the debate on signal reliability. We argue that by-product information is common and that it provides the starting point for ritualization as the process of the evolution of communication. Second, by-product information remains unchanged during ritualization and enforces reliable communication by restricting the options for manipulation and cheating. Third, this perspective changes the focus of research on communication from studying signal costs to studying the costs of cheating. It can thus explain the reliability of signalling in many communication systems that do not rely on handicaps. We emphasize that communication can often be informative but that the evolution of communication does not cause the evolution of information because by-product information often predates and stimulates the evolution of communication. Communication is thus a consequence but not a cause of reliability. Communication is the interplay of inadvertent, informative traits and evolved traits that increase the stimulation and perception of perceivers. Viewing communication as a complex of inadvertent and derived traits facilitates understanding of the selective pressures shaping communication and those shaping information and its reliability. This viewpoint further contributes to resolving the current controversy on the role of information in communication.


Assuntos
Comunicação Animal , Comunicação , Teoria da Informação , Animais , Evolução Biológica , Sinais (Psicologia)
18.
Proc Biol Sci ; 278(1708): 970-9, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21177681

RESUMO

Although chemical communication is the most widespread form of communication, its evolution and diversity are not well understood. By integrating studies of a wide range of terrestrial plants and animals, we show that many chemicals are emitted, which can unintentionally provide information (cues) and, therefore, act as direct precursors for the evolution of intentional communication (signals). Depending on the content, design and the original function of the cue, there are predictable ways that selection can enhance the communicative function of chemicals. We review recent progress on how efficacy-based selection by receivers leads to distinct evolutionary trajectories of chemical communication. Because the original function of a cue may channel but also constrain the evolution of functional communication, we show that a broad perspective on multiple selective pressures acting upon chemicals provides important insights into the origin and dynamic evolution of chemical information transfer. Finally, we argue that integrating chemical ecology into communication theory may significantly enhance our understanding of the evolution, the design and the content of signals in general.


Assuntos
Evolução Biológica , Feromônios/genética , Seleção Genética , Comunicação Animal , Animais , Evolução Molecular , Insetos/genética , Insetos/fisiologia , Mamíferos/genética , Mamíferos/fisiologia , Fenômenos Fisiológicos Vegetais
19.
Ecology ; 92(1): 26-36, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21560673

RESUMO

The degree of interdependence and potential for shared coevolutionary history of frugivorous animals and fleshy-fruited plants are contentious topics. Recently, network analyses revealed that mutualistic relationships between fleshy-fruited plants and frugivores are mostly built upon generalized associations. However, little is known about the determinants of network structure, especially from tropical forests where plants' dependence on animal seed dispersal is particularly high. Here, we present an in-depth analysis of specialization and interaction strength in a plant-frugivore network from a Kenyan rain forest. We recorded fruit removal from 33 plant species in different forest strata (canopy, midstory, understory) and habitats (primary and secondary forest) with a standardized sampling design (3447 interactions in 924 observation hours). We classified the 88 frugivore species into guilds according to dietary specialization (14 obligate, 28 partial, 46 opportunistic frugivores) and forest dependence (50 forest species, 38 visitors). Overall, complementary specialization was similar to that in other plant-frugivore networks. However, the plant-frugivore interactions in the canopy stratum were less specialized than in the mid- and understory, whereas primary and secondary forest did not differ. Plant specialization on frugivores decreased with plant height, and obligate and partial frugivores were less specialized than opportunistic frugivores. The overall impact of a frugivore increased with the number of visits and the specialization on specific plants. Moreover, interaction strength of frugivores differed among forest strata. Obligate frugivores foraged in the canopy where fruit resources were abundant, whereas partial and opportunistic frugivores were more common on mid- and understory plants, respectively. We conclude that the vertical stratification of the frugivore community into obligate and opportunistic feeding guilds structures this plant-frugivore network. The canopy stratum comprises stronger links and generalized associations, whereas the lower strata are composed of weaker links and more specialized interactions. Our results suggest that seed-dispersal relationships of plants in lower forest strata are more prone to disruption than those of canopy trees.


Assuntos
Ecossistema , Comportamento Alimentar/fisiologia , Haplorrinos/fisiologia , Árvores , Clima Tropical , Animais
20.
Front Zool ; 8: 16, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21672266

RESUMO

BACKGROUND: While the gene flow in some organisms is strongly affected by physical barriers and geographical distance, other highly mobile species are able to overcome such constraints. In southern South America, the Andes (here up to 6,900 m) may constitute a formidable barrier to dispersal. In addition, this region was affected by cycles of intercalating arid/moist periods during the Upper/Late Pleistocene and Holocene. These factors may have been crucial in driving the phylogeographic structure of the vertebrate fauna of the region. Here we test these hypotheses in the burrowing parrot Cyanoliseus patagonus (Aves, Psittaciformes) across its wide distributional range in Chile and Argentina. RESULTS: Our data show a Chilean origin for this species, with a single migration event across the Andes during the Upper/Late Pleistocene, which gave rise to all extant Argentinean mitochondrial lineages. Analyses suggest a complex population structure for burrowing parrots in Argentina, which includes a hybrid zone that has remained stable for several thousand years. Within this zone, introgression by expanding haplotypes has resulted in the evolution of an intermediate phenotype. Multivariate regressions show that present day climatic variables have a strong influence on the distribution of genetic heterogeneity, accounting for almost half of the variation in the data. CONCLUSIONS: Here we show how huge barriers like the Andes and the regional environmental conditions imposed constraints on the ability of a parrot species to colonise new habitats, affecting the way in which populations diverged and thus, genetic structure. When contact between divergent populations was re-established, a stable hybrid zone was formed, functioning as a channel for genetic exchange between populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA