Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 47(3): 820-832, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33328132

RESUMO

Ultrasound phantoms are commonly used to assess the performance of ultrasound systems and ensure their proper functionality, in addition to providing opportunities for medical training. However, Focused Assessment with Sonography for Trauma (FAST) phantoms, in particular, are prohibitively expensive and procedure specific. This work explores the use of additive manufacturing to fabricate a patient-specific, full-scale torso ultrasound phantom. Phantom geometry was derived from anonymized computed tomography scans and segments into discrete organs. The digital organs (torso, skeleton, liver, spleen) were 3-D printed and used as castable molds for producing their respective body features. These organs were integrated with artificial hemorrhages to produce a realistic training tool for FAST scans. The resulting phantom is low in cost, has a verified shelf-life of at least 1 y and was positively reviewed by a trauma and emergency radiologist for its ability to provide accurate geometric and ultrasound information.


Assuntos
Imagens de Fantasmas , Impressão Tridimensional , Ultrassonografia/métodos , Humanos
2.
Front Robot AI ; 8: 673533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996931

RESUMO

Stimuli-responsive hydrogels are candidate building blocks for soft robotic applications due to many of their unique properties, including tunable mechanical properties and biocompatibility. Over the past decade, there has been significant progress in developing soft and biohybrid actuators using naturally occurring and synthetic hydrogels to address the increasing demands for machines capable of interacting with fragile biological systems. Recent advancements in three-dimensional (3D) printing technology, either as a standalone manufacturing process or integrated with traditional fabrication techniques, have enabled the development of hydrogel-based actuators with on-demand geometry and actuation modalities. This mini-review surveys existing research efforts to inspire the development of novel fabrication techniques using hydrogel building blocks and identify potential future directions. In this article, existing 3D fabrication techniques for hydrogel actuators are first examined. Next, existing actuation mechanisms, including pneumatic, hydraulic, ionic, dehydration-rehydration, and cell-powered actuation, are reviewed with their benefits and limitations discussed. Subsequently, the applications of hydrogel-based actuators, including compliant handling of fragile items, micro-swimmers, wearable devices, and origami structures, are described. Finally, challenges in fabricating functional actuators using existing techniques are discussed.

3.
Sci Adv ; 7(29)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34261646

RESUMO

The emergence of soft robots has presented new challenges associated with controlling the underlying fluidics of such systems. Here, we introduce a strategy for additively manufacturing unified soft robots comprising fully integrated fluidic circuitry in a single print run via PolyJet three-dimensional (3D) printing. We explore the efficacy of this approach for soft robots designed to leverage novel 3D fluidic circuit elements-e.g., fluidic diodes, "normally closed" transistors, and "normally open" transistors with geometrically tunable pressure-gain functionalities-to operate in response to fluidic analogs of conventional electronic signals, including constant-flow ["direct current (DC)"], "alternating current (AC)"-inspired, and preprogrammed aperiodic ("variable current") input conditions. By enabling fully integrated soft robotic entities (composed of soft actuators, fluidic circuitry, and body features) to be rapidly disseminated, modified on demand, and 3D-printed in a single run, the presented design and additive manufacturing strategy offers unique promise to catalyze new classes of soft robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA